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Including probability and statistics in the core curriculum of mathematics in South African 
schools has made it necessary to train teachers to teach statistics at high school level. This 
study concentrates on practising mathematics teachers who were students in an in-service 
programme. The purpose of the study was to investigate students’ success rates on different 
questions of a multi-part task based on the normal distribution curve. The theory that I 
used to understand the students’ difficulties is Duval’s theory about movement within and 
between semiotic representation systems, called treatment transformations and conversion 
transformations respectively. The first two parts of the problem were unknown percentage 
problems and involved a treatment followed by a conversion. The third was an unknown 
value problem and required a conversion before the students could undertake a treatment 
transformation. The findings reveal that the success rates the students achieved in treatment 
transformations were higher than those they achieved in conversion transformations. The study 
also revealed that the direction of the conversions played a role in success rates. Recognising the 
different challenges the two types of transformations pose requires that teachers pay particular 
attention to actions that involve movement between different representation systems.
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Introduction
Including probability and statistics in the core curriculum of mathematics in South African 
schools has made it necessary to train teachers to teach statistics at high school level. Although 
the normal distribution curve is not part of the school curriculum, it is part of a basic course in 
statistics that aims to equip teachers to teach probability and statistics up to Grade 12 level.

This exploratory study was conducted with 290 in-service secondary school mathematics 
teachers who had enrolled in an in-service mathematics programme. It focuses on one multi-part 
problem, which was part of the course summative assessment and includes ‘unknown percentage’ 
and ‘unknown value’ problems (Watkins, Scheaffer & Cobb, 2004).

In unknown percentage problems, students first transform a given value into an associated 
z-score using the standardisation process. Thereafter, students identify the probability associated 
with the z-score and interpret the value in terms of the graph. This involves working simultaneously 
with properties of the standard normal distribution and the properties of particular z-table values. 

In unknown value problems, students have the percentage and they have first to identify the z-score 
from a table of z-values that corresponds to the given percentage by working with the properties 
of the standard normal distribution. Thereafter, they calculate the x-score by ‘unstandardising’ it, 
or reversing the standardising process.

In this article, I refer to these in-service teachers as students because they were participants in 
the programme. In analysing the students’ performance, I drew on Duval’s (2006) framework 
for transforming semiotic representations, where he distinguishes between transformations that 
occur within the same system of representations (treatments) and those that involve a change of 
register (conversions). 

The purpose of this study was, firstly, to investigate whether there were differences in students’ 
success rates on the two types of transformations (conversions and treatments) that are inherent 
in one multi-part problem and, secondly, to investigate whether the direction of the conversion 
transformations influenced success rates. 

Students experience unknown value and percentage problems as challenging for many reasons, 
including because they involve applying and not just recalling the properties of the normal 
distribution curve. 
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In this article I report one particular aspect of the challenges. 
I am looking at students’ proficiency in carrying out 
treatment and conversion transformations and investigating 
whether the differential engagement with these two types of 
transformations could account for the differences in success 
rates. In doing so, I do not suggest that this is the only factor 
that accounts for the challenges associated with these types 
of problems.

Some literature on the normal distribution 
curve
Reading and Canada (2011) think that distribution of data is 
a fundamental concept in its own right, but that it is complex 
despite its relatively straightforward definition. One can 
see probability distributions as even more complex and 
understanding the differences between data distributions 
and probability distributions is a key step in statistical 
reasoning (Cohen & Chechile, 1997). The authors’ comment 
that, despite the emphasis on hands-on data analysis and 
alternative methods of inference, the concept of probability 
distributions should be part of all introductory statistics 
courses. 

Unlike data distributions, probability distributions are 
formal theoretical models statisticians use to describe the 
likelihood of a variable taking on a value or a range of values. 
It is this theoretical nature that brings out contrasts between 
probability and data, thereby helping students develop ideas 
about stochasm (Cohen & Chechile, 1997, p. 2). Wilensky 
(1997) regards probability distributions as a key concept 
in probability and statistics because of their importance in 
understanding statistical models in scientific research and 
because they stand ‘at the interface between the traditional 
study of probability and the traditional study of statistics’ 
(p. 175), and therefore provides an opportunity to make 
strong connections between the two fields.

Concern about the lack of research into students’ 
understanding of the normal distribution led to Pfannkuch 
and Reading (2006) publishing a special issue of the Statistics 
Education Research Journal. It focused on reasoning about 
distributions and provides suggested research questions 
that could address various aspects of reasoning about 
distributions, including one about the ‘difficulties that 
students encounter when working with analysing and 
interpreting distributions’ (p. 5). 

Bakker and Gravemeijer (2004) regard a distribution as a 
conceptual entity for thinking about variability in data. 
Pfannkuch and Reading (2006) warn that any discussion 
about the nature of distributions needs to include a 
conceptual perspective (which clarifies the notions that 
underpin distributions and why they are important) and an 
operational perspective (which explains how distributions 
capture, display and manipulate specific sets of data). 
Reading and Reid (2006) included both perspectives in their 
development of a two-cycle hierarchy of reasoning about 
distributions, based on the application of the structure of 
observed learning outcomes (SOLO) taxonomy. The first 

cycle involved understanding key elements whilst the 
second, more cognitively sophisticated levels, involved 
using those elements. 

Pfaff and Weinberg (2009) believed that actively generating 
data before analysing them would increase understanding 
of the statistical concepts. One may see this as indicative 
of the operational perspective that Pfannkuch and Reading 
(2006) described. However, their study (Pfaff & Weinberg, 
2009) found that, despite the fact that their students actively 
generated data, their students’ performance in their post-
activity assessments was no better than it was in their pre-
activity performance. 

Carlson and Windquist (2011), in their comment about these 
unexpected results, argued that Pfaff and Weinberg were 
correct in concluding that ‘the physical act of generating 
data was not sufficient to produce learning’ (p. 3). However, 
they disagreed with the conclusion that the authors (Pfaff 
& Weinberg, 2009) drew that ‘active learning approaches in 
general are ineffective’ (Carlson & Windquist, 2011, p. 3).

North and Zewotir (2006) move beyond considering only 
the approach to teaching statistics. They question the content 
that introductory statistics courses should cover. They call 
for a re-think of the statistics courses for social scientists 
and argue for courses that focus on how to use descriptive 
statistics instead of focusing on calculations like those based 
on grouped data. They advise that the courses should devote 
more time to understanding principles and developing 
statistical reasoning by using rich contexts. (North & 
Zewotir, 2006). 

However, the situation of social scientists, who are 
learning how to interpret and use statistics when studying 
socioeconomic phenomena, is different to that of teachers 
who are learning how to teach statistics to school children 
– the context of the current study. Reading and Canada 
(2011) describe two studies about the statistical reasoning of 
elementary teachers. Both studies ‘firmly cast the teacher in 
the role of the learner’ (p. 229) 

In the current study, the teachers were also the learners in a 
basic course in statistics that aimed to equip them to teach 
probability and statistics up to Grade 12 level. The module 
covered aspects of statistics like central tendencies, grouped 
data, distributions, bivariate data, regression, probability 
concepts and probability distributions. 

A concept like the normal distribution curve is not part of the 
school curriculum. However, one can see it as an example of 
what Ball, Thames and Phelps (2008) call horizon knowledge. 
This is an ‘awareness of how mathematical topics are related 
over the span of mathematics included in the curriculum’ 
(p. 403) and is one of the six domains that comprise their 
model of mathematical knowledge for teaching. Having 
knowledge of the horizon can help teachers make decisions 
about how to teach concepts like variation, distributions and 
other statistical topics.
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different register by identifying the location of the point 
A(2; 3) on the Cartesian plane before performing the rotation 
transformation. This movement (from the two-coordinate 
description of A to the location of the point A in the Cartesian 
plane) is an example of a conversion transformation because 
the register has changed but not the object (point A). 
Thereafter the learner worked out the resulting location 
of the point when he rotated it 90° through the origin by 
interpreting the motion within the new register. He then 
identified the location of the rotated point and thereafter 
assigned the coordinates based on its new position (Bansilal 
& Naidoo, 2012). 

This example illustrates how it is possible for one to 
perform a transformation using the same representation 
system (a treatment) and how one could perform it using a 
representation from a different register. However, the second 
case needed a conversion transformation to move to the 
different register of representation before one could perform 
a treatment using the second system of representation.

Duval gives conversions a more central role in understanding 
mathematics than he does to treatments and regards 
conversions as a cognitive threshold that is the main cause 
of learning difficulties in mathematics. He argues that one 
cannot reduce a conversion of a representation (change of 
register) to a treatment. Therefore, conversions account for 
one of the sources of incomprehension in mathematics. 

He believes that ‘we cannot deeply analyse and understand 
the problem of mathematics comprehension for most 
learners if we do not start by separating the two types of 
representation transformation’ (Duval, 2006, p. 127). Duval’s 
contention is that treatments command more attention in 
mathematics whilst conversions cause the greatest difficulties 
in mathematics. He argues that conversions only become 
relevant because we need to choose ‘the register in which the 
necessary treatments can be carried out most economically 
or most powerfully’. Another reason he suggests for using 
conversions is that they provide ‘a second register to serve 
as a support or guide for the treatments being carried out in 
another register’ (p. 127).

The Visualiser/Analyser (VA) model of Zazkis, Dautermann 
and Dubinsky (1996), which specifies two elements 
(visualisation and analysis) as two interacting modes of 
thought, may help us develop an insight into the effort 
students require to understand conversion transformations. 
The model describes a series of movements between visual 
and analytic representations, each of which is mutually 
dependent in problem solving rather than unrelated 
opposites. 

In their model, the thinking begins with an act of 
visualisation, V1 (see Figure 1). It could consist of looking at 
some ‘picture’ and constructing mental processes or objects. 
The next step is an act of analysis, A1, which consists of some 
kind of coordination of the objects and processes constructed 
in step V1. This analysis can lead to new constructions. In 
a subsequent act of visualisation, V2, learners return to the 
same ‘picture’ they used in V1. However, because of the 

The analytic framework
A set of elementary signs, a set of rules for producing and 
transforming signs as well as an underlying meaning 
structure that derives from the relationship between the 
signs within the system characterise a semiotic system 
(Ernest, 2006). 

Radford (2001) has argued that using signs and tools modify 
our cognitive functions. On the other hand, Ernest (2006) 
says that a focus on signs and sign use is the characterising 
feature of a semiotic perspective of mathematical activity 
that provides a way of conceptualising the teaching and 
learning of mathematics. Each semiotic system has its own 
specific way of working.

Duval (2006) points out that the role semiotic systems of 
representation play is not only to designate mathematical 
objects or to communicate but also to work on, and with, 
mathematical objects. Duval asserts that two different types of 
transformations of semiotic representations can occur during 
any mathematical activity. The first type, called treatments, 
involves transformations from one semiotic representation 
to another within the same system or register (Duval, 2006, 
p. 110). Duval (2002) argues that the treatments that one can 
perform depend on the register one uses and:

the procedures for carrying out a numerical operation depend 
just as much on the system of representation used for the numbers 
as on the mathematical properties of the of the operation. (p. 111) 

He illustrates his argument with the fact that the algorithm 
for adding fractions is different for a decimal notation and 
a fractional notation of the same numbers (0.2 + 0.25 as 
opposed to  1

5 + 14 ).

Furthermore, when dealing with treatments, the semiotic 
system eases the connection of different representations 
because the rules of the semiotic system link different 
representations of the same object.

The second type, called conversions, involves changing the 
system but retaining the reference to the same objects (Duval, 
2006, p. 112).

In order to illustrate the differences between treatments 
and conversions further, I will use an example from 
transformation geometry. 

Consider a point A (2; 3) on the Cartesian plane with the 
required transformation on A being a clockwise rotation of 90° 
around the origin. A person can perform the transformation 
on A by applying the algebraic rule (x, y) → (-y, x) to get 
the result A (-3; 2). This transformation is an example of a 
treatment because it does not require a change in the system 
of representation because, after applying the formula, the 
object is being described by the same representation. 

A study by Bansilal and Naidoo (2012), on learners’ 
engagement with transformation geometry, identified 
a learner who considered the representation of A in a 
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analysis in A1, the picture has changed. As learners repeat 
the movement between the V and A, they use each act 
of analysis, based on the previous act of visualisation, to 
produce new and richer visualisations that they then subject 
to more sophisticated analyses. This creates a spiral effect. 

In this model, the acts of analysis deepen the acts of 
visualisation and vice versa. It is also important to note that, 
according to this model, as learners repeat the horizontal 
motion in the model, the acts of visualisation and analysis 
become successively closer. At first, the passage from one to 
the other may represent a major mental effort. However, the 
two kinds of thought become gradually more interrelated 
and the movement between them becomes less of a concern. 

The VA model suggests that the repetition of these successive 
visual and analytic acts move closer together over time. The 
implication of this is that this fusion occurs when learners 
are able to see the properties of the object emerging from the 
various representations as a whole and can appreciate that 
the different representations of the same object emphasise 
different properties of the object. However, it is still one 
object, like seeing the object from different perspectives. 
At the stage when learners can see past the differences in 
representations and understand the connections between the 
properties revealed by the different registers, then conversion 
transformations are less likely to present barriers. 

Therefore, the VA theory suggests, that it is at this stage 
when the two kinds of perspectives merge, that the ease 
of conversion transformations may be facilitated. On the 
other hand, when learners view representations from two 
registers as being separate and unconnected, conversion 
transformations would be more laborious because the 
learners do not appreciate the links between the properties 
that each representation conveys. 

Methodology
The study utilised an interpretive approach because the 
main goal of the study was to understand the students’ 
interpretations of reality (Cohen, Manion & Morrison, 2000) 
when it comes to solving problems based on the normal 
distribution curve.

The participants were 290 practising teachers who had 
enrolled in an in-service programme designed to upgrade and 
retrain mathematics teachers in the Further Education and 
Training (FET) band. The programme was for an Advanced 
Certificate in Education (ACE) with a Mathematics FET 
specialisation. The programme consisted of eight modules, 
four of which were specific to mathematics, two of which 
were generic education modules and two were mathematics 
education modules.

This article focuses on one of the four mathematics modules 
devoted to a study of introductory probability and statistics 
suitable for teachers of FET mathematics.

The test items was selected in the module specifically for 
assessment and research purposes and presented the three-
part task as part of a summative classroom assessment, 
which included questions from other sections of the module. 

One can regard the analysis of the students’ responses as 
content analysis to throw ‘additional light on the source of 
communication, its author, and on its intended recipients, 
those to whom the message is directed’ (Cohen et al., 2000, 
p. 165). In this case, the students’ responses are the source 
of the communication intended to convey their engagement 
with the concept.

The research questions that focused on one multi-part 
problem based on the normal distribution are:

•	 Are students more likely to succeed in completing the 
treatment or conversion transformations the problem 
requires?

•	 What role does the direction of the conversion 
transformations play in the students’ success rates?

The data analysis process involved studying the responses 
of the 290 students in order to understand the ‘what’, the 
‘why’ and the ‘how’ that underlies the data (Henning, 2004). 
Dey (1993, p. 30) describes data analysis as ‘a process of 
resolving data into its constituent components to reveal its 
characteristic elements and structure’.

The students’ responses were broken down into constituent 
parts that reflected phases of treatments and conversions. I 
did this to classify and make connections between the data 
elements (Henning, 2004, p. 128). This means presenting ‘the 
operations by which data are broken down, conceptualised, 
and put together in new ways’ (Strauss & Corbin, 1998, 
p. 120) in order to assess their responses in terms of movement 
within the same system or between different systems. The 
students’ responses were then categorised into various 
categories according to their written explanations.

The findings (see below) explain the specific coding, with 
examples.

Ethical considerations and recruitment 
procedures
The participants in this study were the teachers who had 
enrolled in the particular ACE programme. All students 
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Source: Zazkis, R., Dautermann, J., & Dubinsky, E. (1996). Using visual and analytic strategies: 
A study of students’ understanding of permutation and symmetry groups. Journal for 
Research in Mathematics Education, 27(4), 435–457

FIGURE 1: Visualisation/Analysis model.
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signed informed consent forms and agreed that their 
responses could be used on condition that no real names 
or personal details would be revealed. No student refused 
permission.

Reliability and validity
The test items were carefully selected after discussing them 
with a colleague from the United States of America (USA). I 
ensured that the questions were ones that the students would 
have encountered in their learning during the course. The 
language was sufficiently basic to ensure that most students 
would understand it. 

I coded the responses myself. However, discussions with an 
experienced statistics education researcher constituted peer 
debriefing to improve the credibility of the analysis. Peer 
debriefing occurs when researchers describe the research to 
peers who ask the ‘why’ and ‘so what’ questions and may 
suggest alternative frameworks.

The test items
The tasks used an application of the properties of the standard 
normal distribution as its basis. When the distribution of a 
variable in a set of data is approximately normal, one can use 
the properties of the standard normal distribution curve to 
make inferences about the variable under discussion. 

The standard normal distribution has a mean of 0 and a 
standard deviation of 1. One refers to the scores as z-scores 
in the standard normal distribution. Converting to standard 
units, or standardising, is the two-step process of re-centring 
and re-scaling that turns any normal distribution into the 
standard normal. Firstly, one re-centres all the values in the 
normal distribution by subtracting the mean from each. This 
results in a distribution with a mean of 0. Thereafter, one 
divides all the values by the standard deviation (re-scaling). 
This results in a distribution with a standard deviation of 1.

This process of re-centring and re-scaling allows one to 
solve problems like the unknown percentage problem 
(Question 1 and Question 2) and unknown value problem 
(Question 3) (Watkins et al., 2004). Students encountered both 
types of questions during class discussions and assessments. 

In unknown percentage problems, students first transform 
a given value into an associated z-score by re-centring and 
re-scaling. The next step, in which students identify the 
probability associated with the z-score and interpret its value 
in terms of the graph, involves working simultaneously 
with properties of the standard normal distribution and the 
properties of particular z-table values. 

Unknown value problems require students first to identify 
the z-score from a table of z-values that corresponds to a 
given percentage. Thereafter, they calculate the x-score by 

‘unstandardising’ it, or reversing the standardising process.
The questions under scrutiny in this study are: 

A university entrance examination scores are scaled so that 
they are approximately normal. The mean is about 505 and 
the standard deviation is about 111.

1.	 Find the probability that a randomly selected student has 
a score below 400. 

2.	 Find the probability that a randomly selected student has 
a score between 450 and 600. 

3.	 The school will offer scholarships to students scoring in 
the top 10%. What score should be used to decide who 
should be offered scholarships? 

Remarks about, and solutions to, test items
Note that these types of questions were familiar to the 
students because part of the course was devoted to solving 
such problems using applications of the normal distribution 
curve. Defining the random variable X is important for 
computing the probabilities associated with the random 
variable.

In this case, the random variable is the entrance examination 
scores, which have a normal distribution. In order to solve this 
problem, students received a formula sheet that contained 
the standardisation formula                  . The students could use 
scientific calculators. 

Different statistics textbooks use different tabulation values 
of a standard normal curve area for a given positive value 
z0, like P(0 < Z < z0) or P(Z < z0) or P(Z > z0), where these are 
associated with the area of the corresponding sectors. In the 
lectures and the assessments, the z-table the students had 
used was P(0 < Z < z0) for positive z0. 

In order to answer these questions, it is necessary for 
students to use properties that apply to the standard normal 
distribution, like having a mean of 0, a standard deviation 
of 1 and an area (under the curve) of 1. The area under the 
curve is the probability. The symmetry of the curve means 
that the area to the left of 0 is equal to the area to the right of 
0. Because of symmetry at 0, P(-z0 < Z < 0) = P(0 < Z < z0) and 
P(Z < -z0) = P(Z > z0), where z0 is positive and -z0 is negative.

Question 1: We need to find P(x < 400) = ?
The unknown percentage problem requires students to 
calculate the corresponding z-score from the given x-score 
using the process of ‘standardising’:

 

Students then identify the percentage that corresponds to the 
z-score from the z-table and interpret it. Figure 2 shows the 
categorisation of the steps as treatments and conversions.
 
Table 1 presents a summary of the solution with explanatory 
comments and diagrams.

z =
 x – μ

         σ

z =
 x – mean 

=   x – μ 
           SD              σ



Original Research

doi:10.4102/pythagoras.v33i1.132http://www.pythagoras.org.za

Page 6 of 13

Question 2: Here we need P(450 < x < 600) = ?
Figure 3 is a diagram that explains the decomposition of the 
problem into treatments and conversions.

Table 2 presents a summary of the solution with explanatory 
comments and diagrams.

Question 3: We need to find an x-score so that P(x > ?) = 0.1
The unknown value problem requires students first to 
identify the z-score from a table of z-scores that corresponds 
to the given percentage. The students can then calculate the 
x-score by ‘unstandardising’, or reversing the standardising 
process. Figure 4 shows the categorisation of the steps as 
treatments and conversions. 

The diagram in Figure 4 has the arrows reversed from 
Question 1 to show that the direction of the solution is 
opposite to that of Question 1. Table 3 presents a summary of 
the solution with explanatory comments and diagrams.

Findings and discussion
One can regard the standardisation procedure as a treatment 
transformation because it is within the same register. The 
x-score is the input and the z-score is the output of the 
procedure. As Duval predicted, most students did not 
experience problems at this point. For Question 1 and 

TABLE 1: Solution to Question 1 with explanations. 

Solution Comments

One can regard the first part as a treatment because it involves moving from a x-score to a z-score that 
corresponds to x = 400 using the process of standardising and the formula.

Reading the p-value that corresponds to z = 0.95: p = 0.3289. One can regard the second step as a conversion, but in two parts. Firstly, it involves identifying the probability 
value (p-value) from the z-table that corresponds to z = 0.95.

It then involves interpreting the p-value taken from the z-table to find P(x < 400). One can regard this 
movement as a conversion because it involves interpreting what the z-score with the corresponding p-value 
0.3289 represents in the standard normal distribution curve. That is, students have to recognise that the 
shaded portion below represents the value p = 0.3289, or P(0 < Z < 0.95) – the convention used by the z-table 
provided to students. Therefore, the area of the shaded portion is 0.3289.

P (x < 400) 
= P (z < -0.95) 
= 0.5 – 0.3289 
= 0.1711 = 17.1% 
The probability that a randomly selected student has a score 
below 400 is 17.1% 

The symmetry of the standard normal distribution implies that P(0 < Z < 0.95) = P(-0.95 < Z < 0). In order to 
find the area of the shaded portion in the graph below, students must subtract 0.3289 from 0.5. 

z = x – μ  =   400 – 505  
=  -0.95

         
σ
                

111

-3             -2              -1              0               1               2               3

-3             -2              -1              0               1               2               3

x0 z0 P(Z < |z0|)

Treatment Conversion

FIGURE 2: Question 1 broken down in terms of conversions and treatments.

x0 z0 P(Z ˃ z0)

Treatment Conversion

FIGURE 4: Question 3 broken down in terms of conversions and treatments.

x1 z1

Treatment Conversion

Treatment Conversion

x2
z2

P(Z < |z1|)

P(z1 < Z < z2)

P(Z < z2)

FIGURE 3: Question 2 broken down in terms of conversions and treatments.

Question 2, students could complete the standardisation 
procedure in one register with the visualisation serving only as ‘a 
second register to serve as a support or guide for the treatments 
being carried out in another register’ (Duval, 2006, p. 127).

For Question 3, the situation is a bit different because the 
conversions are necessary because we need to choose ‘the 
register in which the necessary treatments can be carried 
out most economically or most powerfully’ (Duval, 2006, 
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TABLE 2: Solution to Question 2 with explanations.

Solution Comments Visualisation

The z-score that corresponds to 600: One can regard this as a treatment. 

The p-value that corresponds to z = 0.86 is 
P1 = 0.3051

Students read from the z-table and link the shaded 
portion to the probability P(0 < z < 0.86) = 0.3289, the 
convention used by the z-table provided to students.

Finding the z-score that corresponds to 450: Treatment

Reading off P2 = 0.1915 from the z-table Involves understanding that that the shaded portion 
represents the probability of P(-0.50 < Z < 0) = 0.1915, 
the convention used by the z-table provided to students.

Finally:
P(450 < x < 600)
= P1+ P2
= 0.3051 + 0.1915
= 0.4966
= 49.66% 

Involves understanding that the shaded portion represents 
the probability P(-0.50 < Z < 0.86) = P(450 < x < 600).

Page 7 of 13

-3             -2              -1              0               1               2               3

z = x – μ =   600 – 505 
= 0.86

         
σ
              

111

z  =  x – μ  = 450 – 505  
= -0.50          

σ
              

111

TABLE 3: Solutions to Question 3 with explanations.

Solution Comments Visualisation

Interpreting ‘top 10%’ as p = 0.4 Students interpret the statement using the first graph 
alongside and converting it in terms of the second graph 
that can allow them to read off the z-score that 
corresponds to p = 0.4.

First part of conversion

Reading off the z-score that corresponds to 
p-value = 0.4 from z-table to get z = 1.28 

Completion of conversion

Unstandardisation  treatmentx = μ + zσ
   = 505 + 1.28(111)
   = 647.08

-3             -2              -1              0               1               2               3

-3              -2               -1              0               1               2               3

p. 127) which permitted the process of unstandardising of 
the z-score. One could not access the z-score without doing 
a conversion operation which would allow movement from 
the percentage value to the z-score. 

It is necessary to distinguish between direct and inverse 
problems (Groetsch, 1999) in this study. A direct problem is 
one that asks for an output when students have the input and 
the process. In an inverse problem, students have the output 

-3             -2              -1              0               1               2               3

-3             -2              -1              0               1               2               3
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Some students continued and used the resulting ‘probability 
value’ (obtained as for S1) to determine a z-score in the 
z-table. An example follows:

Here the student used the z-score (-0.946) as a probability 
value, found the z-score that corresponded to the ‘probability 
value’ and presented the z-score (1.83) as a probability (even 
though it was greater than 1). 

 ■ Partial conversions (PC)
Responses were coded as partial conversions (PC) if students 
determined a p-value from the z-table that corresponded to 
the z-score even if the value was not accurate as long as there 
was a reading of a p-value from a related z-score. An example 
follows:

■ Complete or full conversions (FC)
Here responses were coded as complete or full conversions 
(FC) if students interpreted the p-values of the z-table in 
terms of the area under the curve to provide correct (or 
nearly correct) answers.

Each step depends on the previous step. Therefore, a student 
who completed an FC, would have done the PC, FT and PT 
steps.

Table 4 shows that, of the 290 students, 223 (77%) were able 
to recognise the correct standardisation formula. Only 199 
(69%) were able to complete the standardisation procedure 
correctly. Fifty-five (19%) performed partial conversions and 
79 (27%) completed the conversions and the question.

and the problem could ask for the input or the process that 
led to the output. 

One can regard Question 1 as a direct problem and Question 2 
as a two–step direct problem. One can regard Question 3 as an 
inverse problem because it consists of a conversion that takes 
a p-value and converts it to a z-score. The z-table is organised 
according to the z-scores. For a given z-value, students can 
read off a corresponding p-value. In Question 3, the students 
had a probability value and had to scan the tables until they 
identified a suitable z-score that corresponded to the given 
probability. Secondly, the formula in the formula sheet was 
the standardisation formula               .  

In Question 1 and Question 2, the students used the formula 
in the form presented. The value x was the input and the 
output was z. However, for Question 3, the students had 
output z and they had to calculate the input. Therefore, 
one can regard Question 3 as a combination of two inverse 
problems and as an inverse problem in the way that Groetsch 
(1999) described.

In order to present the analysis, the students’ responses are 
labelled to serve as references, for example, S17 which means 
the response was that of student 17. Students’ responses are 
labelled from S1 to S290.

The students’ responses are verbatim, although the layout 
has been changed because of limited space.

Findings for Question 1 
× Blank or unrelated algorithm
Here responses were coded blank if students made no 
attempt. A response was coded as unrelated algorithms if 
students wrote a formula where the algorithms did not relate 
to the standardisation procedure. Two examples follow:

 ○ Partial treatments (PT)
Here responses were coded as partial treatments (PT) if 
students wrote the appropriate standardisation formula but 
did not substitute the correct values or substituted the correct 
values but did not compute the result correctly, for example:

■ Complete or full treatments (FT)
Here responses were coded as complete or full treatments 
(FT) if students completed the standardisation and arrived at 
the correct figure of -0.945 or if they wrote the value 0.945 as 
the value they would read off from the z-table. If they went 
on to other steps that were incorrect, then the responses were 
coded as FT. For example, some students (12) did not read 
off a p-value from the z-table and interpreted the z-score as a 
probability. An example follows:

S3: x – ks =       0  
 5S41: P(400)       =  505

S1: z =   x – μ

           
σ

  =  400 – 505

             
11

   = -0.946
P(z < 400) = ?

     = 0.5 - 0.946 = 0.4459

S32: z = x – μ

         
σ

  = 400 – 505
            11

   = -0.946

P(z < -0.946)

P(0 < z < 0.946) = 1.83

S9:  z = x – μ

        
σ

  = 400 – 505

            11

   = -0.95

 P(z < -0.946)
            where 0.95 corresponds to a z-score of 33.65%

TABLE 4: Results for Question 1. 

Blank or irrelevant algorithm PT FT FT PC FT FC

× ○ ● ● □ ● ■
Number of students 67 24 65 55 79

PT, partial treatments; FT, full treatments; PC, partial conversions; FC, full conversions.

z = x – μ
        σ

S18:      z = x – μ

                          
σ

             
400

 = x – 505 
              11
     x = 44 905
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In order to get a clearer idea of how the students progressed 
from the treatment steps to the conversion steps, we can 
consider the cumulative totals: 

•	 the number of students who managed partial treatments 
will include those who completed the treatments

•	 those who completed the treatments will include those 
who managed partial conversions 

•	 those who managed partial conversions will include those 
who completed full conversions.

The bar graph in Figure 5 gives these numbers. Of the 
290 students, 223 (77%) students began the appropriate 
standardisation procedure. Of these 223 students, 199 (89%) 
completed the standardisation treatments and of these, 134 
(67%) were able to complete the first part of the conversions. 
Seventy-nine (59%) of the last group were able to complete 
the conversions correctly. 

Findings for Question 2
The following codes were used for Question 2. It is not 
necessary to give examples of responses in all categories 
because they are similar to those for Question 1 except that 
there are two sets of treatments and conversions. 

×    Blank or unrelated algorithm
 ○         Partial treatments (PT), where students chose the
  appropriate standardisation formula (in one or in both 
   cases) but did not complete both.
● Full or complete treatments (FT), where students 
   completed the standardisation procedure in one or in both 
    cases but completed no further correct steps. 
□ Partial conversions (PC), where students read off a p-value 
    from the z-table in one or in both cases, but did not combine 
    the two p-values correctly, for example:

■ Full or complete conversions (FC), where students   
  interpreted the p-values of the z-table in terms of the area  
   under curve to provide correct (or nearly correct) answers.

Table 5 shows that, of the 290 students, 174 (60%) started 
one or both standardisation procedures, whilst only 156 
(54%) were able to complete one or both standardisation 
procedures correctly. Only 40 students (14%) completed the 

questions correctly (two of whom had a final answer that 
differed slightly from the expected one).

In order to get a clearer idea of how the students progressed 
from the treatment steps to the conversion steps, I considered 
the cumulative totals from right to left:

•	 the number of students who managed partial treatments 
will include those who completed treatments

•	 those who completed treatments will include those who 
managed partial conversions

•	 those who managed partial conversions will include those 
who completed full conversions. 

The bar graph in Figure 5 gives these numbers. Of the 
290 students, 174 (60%) were able to recognise the correct 
standardisation formula, whilst only 156 (90%) of these 
student were able to complete it correctly once or twice. Of 
these 156 students, 96 (62%) completed only the first part of 
the conversions once or twice (they read off the p-value for 
the corresponding z-score). Only 40 (42%) of these were able 
to complete the conversions and arrive at the correct result.

Findings for Question 3
The following codes were used for Question 3:

× Blank or unrelated algorithm
□ Partial conversions (PC), where students interpreted the  
    percentage value given as a p-value, which was the correct 
     one (p = 0.4), but did not carry out any further correct steps 
  or could have interpreted the percentage as an incorrect   
    p-value.

■ Full or complete conversions (FC), where students read off 
     p-values in a z-table to generate a z-score which was correct 
           or incorrect; students who completed full conversions all 
    continued.
○ Partial treatments (PT), where students chose the  
    appropriate formula for unstandardising a z-score.

● Full or complete treatments (FT), where students 
    completed the procedure for unstandardisation correctly 
    or nearly correctly.

The response of S133’s was coded almost correct compared 
to that of S135, where the final answer was not close to the 
expected one.

S29: (SCORE) = 0.1
z = 0.0398

S135: z = 1.3
              x = zσ + μ 

  = 1.3 × 111 + 505  
   = 519.3

                519 math’s score should be offered

S133: x = zσ + μ
                   = 128 (111) + 505

  = 674.08

TABLE 5: Results for Question 2.

Blank or irrelevant algorithm PT FT FT PC FT FC

× ○ ● ● □ ● ■

Number of students 116 18 60 56 40

PT, partial treatments; FT, full treatments; PC, partial conversions; FC, full conversions.

S2: P1
 
=

  z =
   x – μ

                  σ
     

=
  600 – 505

                     111
            

=
   95

                111
                   =  0.856

P2 =  z =
  x – μ

                   σ
     

=
  450 – 505

                    111
            =   55

               
111

                   =  0.495
P(450 < X < 600) = P(-0.495 < Z < 0.856) = P1 – P2 = 0.1144
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Table 6 shows that, of the 290 students, 108 students did not 
respond and 34 used an irrelevant algorithm. Therefore, 142 
(49%) did not even begin partial conversions. Seventy-eight 
(27%) tried but did not generate the correct p-value whilst 
20 (7%) students completed partial conversions by correctly 
extracting the p-value from the information the students had. 
Three (1%) students completed the conversions and started 
the unstandardising treatments, whilst 47 (15%) students 
managed complete treatments and obtained a correct or 
almost correct solution (the final answer that 26 students 
reached differed slightly from the expected answer).

In order to get a clearer idea of how the students progressed 
from the conversion steps to the treatment steps, I considered 
the cumulative totals from right to left: 

•	 the number of students who completed partial conversions 
will include those who completed full conversions

•	 those who completed full conversions will include those 
who completed partial treatments 

•	 those who completed partial treatments will include those 
who completed full treatments.

The bar graph in Figure 6 gives these figures. There were 
148 (51%) students who started the conversions (obtained 
p-values). Of these 148 students, 50 were able to complete 
the conversions by reading off p-values and chose the correct 
formula for unstandardising. That is, 34% completed the 
conversions (read off the p-values for the corresponding 
z-score) and started treatments whilst 47 (94%) of the 
50 students were able to complete the treatments and solve 
the problem (the final answers of 26 students differed slightly 
from the expected one).

Performance on the three questions
Students clearly found that Question 2 was more challenging 
than Question 1 was. Only 40 students got Question 2 correct 
whilst 79 students managed to complete Question 1 correctly 
– almost twice as many. Furthermore, there were 67 blank 
or incorrect algorithms for Question 1 compared to 116 for 
Question 2. This showed that more students did not attempt 
to solve Question 2 than those who failed to attempt Question 1. 

It is clear that Question 2 was more complex than Question 1 
because it involves regions bounded by two given x-scores. 
Therefore, there were two sets of treatments as well as two 
sets of partial conversions and completing the conversions 
meant that students had to take a global view of the two 
areas and decide how they would use them to generate the 
required percentages. Consequently, solving Question 2 
would have been more demanding than just carrying out 
treatments followed by conversions, as Question 1 required. 

Question 3 was challenging for the 142 (49%) students who 
did not start correctly. Forty-seven completed the whole 
question correctly or almost correctly. This was more than the 
40 who completed Question 2 correctly or almost correctly 
but fewer than the 69 who completed Question 1 correctly or 
almost correctly. 

If one compares performance on Question 3 with that on 
Question 1, 67 students did not start Question 1 correctly. On 
the other hand, there were more than twice as many (142) 
students who did not begin Question 3 correctly. There are 
two possible reasons for this. 

Firstly, the inverse nature of the question meant that the steps 
to the solution were reversed, which made it more complex 
(Bansilal, Mkhwanazi & Mahlabela, in press; Groetsch, 
1999; Nathan & Koedinger, 2000). Secondly, students had to 
complete the conversions before the treatments. This created 
a bigger first barrier than the situation where the first barrier 
was not as great as the second was. 

Duval’s (2006) theory maintains that conversion 
transformations are more difficult than treatment 
transformations are because they require crossing into 
another register of representation. Conversions are more 
complex because they involve movement in each of the 
two registers and movement across them, whilst treatments 
require movement in one register only.

Success rates in conversion transformations and 
treatment transformations 
The bar graph in Figure 5 provides a visual representation of 
the progress of students through the stages for Question 1 and 
Question 2. It shows the number of students who did a PT, 
FT, FT PC and FT FC respectively and excludes the students 
who made no response or used a wrong formula. Note that, 
in this graph, the first set includes the second, which includes 
the third, which includes the fourth and derives from the 
figures Tables 4 and Table 5 provide.

TABLE 6: Results for Question 3.

Blank or irrelevant algorithm PC FC PT FC FT

× □ ■ ○ ■ ●
Number of students 142 98 3 47

PT, partial treatments; FT, full treatments; PC, partial conversions; FC, full conversions.
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FIGURE 5: Number of students progressing at each stage to the final solution for 
Question 1 and Question 2.
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The cumulative picture for Question 3 (see Figure 6) shows 
the number of students who completed a PC, FC, FC PT and 
FC FT respectively. The first set includes the second, which 
includes the third, which includes the fourth. These figures 
derive from the information Table 6 provides.

There are clear trends in performance on Question 1 and 
Question 2. 

Of the 290 students, 223 (77%) performed a PT on Question 1. 
Of these, 199 (89%) completed the treatments. Of this group, 
134 (67%) went on to complete a PC and 79 (59%) of this 
group were successful. For Question 2, the numbers from 
Table 2 are 290 (original), 174 (PT), 156 (FT), 96 (PC) and 40 
(FC). The flow diagrams below show these figures:

Question 1: 100% → (PT) 77% → (FT) 89% → (PC) 67% → (FC) 59%
Question 2: 100% → (PT) 60% → (FT) 90% → (PC) 62% → (FC) 42%

The attrition rate at each stage of Question 2 was higher than 
that for Question 1, except for the progression from partial 
treatments to full treatments, where 90%of students who 
managed partial treatments for Question 2 completed the 
treatments. The corresponding percentage for Question 1 
was 89%. However, for all other stages, the progression rate 
from one to the next was higher for Question 1 than it was for 
Question 2. On both questions, the highest attrition rate was 
in the progress from PC to FC. It showed that only 59% of 
students who started conversions for Question 1 completed 
them, whilst for Question 2 only 42% of students who started 
the conversions were able to complete them.

When one considers the performance on Question 3, the 
numbers from Table 6 are 290, 148 (PC), 50 (FC), 50 (PT), 
47 (FT). The flow diagram below shows the figures:

Question 3: 100% → (PC) 51% → (FC) 34% → (PT) 100% → (FT) 94%

Here, as for Question 1 and Question 2, the highest attrition 
rate was in the movement from PC to FC. Only 34% of 
the group who started conversions were able to complete 
them and all of these students went on to start treatments. 

Thereafter, there were few challenges for this group and only 
three students did not complete the procedure.

The treatment procedure for Question 3 was not a problem 
for those students who completed their conversions. Forty-
seven of the 50 students (94%) who completed conversions 
were able to complete treatments. 

The conversions were problems in Question 1 and 
Question 2. They were insurmountable for many, because 
only 79 of the 199 (39%) and 40 of the 156 (25%) of the students 
who completed treatments were successful with conversions.

A comparison between trends in responses across the 
questions supports Duval’s assertion that conversion 
transformations can be more complex than treatments. For 
Question 1 and Question 2, the percentage of students who 
proceeded from full treatments to full conversions was 39% 
and 25% respectively, whilst for Question 3 the percentage 
of students who proceeded from full conversions to full 
treatments was 94%. 

It is clear that, for the group as a whole, the students’ success 
rates in conversion transformations were lower than in 
treatment transformations. However, not all the students 
would have experienced conversions as more difficult than 
treatments. The movement between the two registers was 
not a problem for some students.

Direction of conversions
The direction of conversions is another factor that Duval 
contends affects the complexity of mathematical activities. 
Duval maintains that a ‘conversion in one direction can be 
without any cognitive link with this in the reverse direction’ 
(Duval, 2008, p. 47), suggesting that the direction of the 
conversions is important. Duval has shown that, when the 
original and destination registers of conversions change, 
students’ performances vary considerably. In one case of 
linear algebra, 83% of students were able to move successfully 
between a two-dimensional table representation of a vector 
to a two-dimensional graphical representation, whereas only 
34% of students were able to move in the opposite direction.

The direction of the conversions seems to have been a 
factor that influenced the students’ success rates. Sixty-
nine students completed Question 1 correctly, whilst only 
40 students did so on Question 3. Of the students who started 
conversions for Question 1, 59% were able to complete them, 
whilst only 34% of the students who started conversions for 
Question 3 were able to do so. 

The reason for the lower completion rate for the conversions 
for Question 3 could lie in the fact that the conversion 
transformation of Question 1 involved moving from the 
z-scores to the probability value (or area) that travelled in the 
opposite direction to the conversion in Question 3 (moving 
from the probability value to the z-score). In addition, 
89% of the students who completed conversions for 
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Question 3 went on to complete the treatments. Therefore, 
the conversions were bigger hurdles. The percentage 
of students who proceeded from full treatments to full 
conversions in Question 1 was 39%.

One of the factors that made Question 3 more challenging 
was the direction of the conversions, which was different in 
the two cases. Duval’s own observations about linear algebra 
(2008) support this. However, we need further research to 
help us understand why conversions in one direction were 
more challenging to complete than were conversions in 
another.

Summary 
This article presented an analysis of 290 students’ responses 
to a three-part task using applications of the normal 
distribution curve. Duval’s framework was used to explain 
the students’ difficulties with solving the task.

Question 1 and Question 2 of the task are ‘unknown 
percentage problems’ and Question 3 is an example of an 
‘unknown value problem’ (Watkins et al., 2004) and one can 
regard it as an inverse problem (Groetsch, 1999).

Different parts of the solutions to the questions were 
categorised into conversions and treatments, depending on 
whether the operation required students to move across 
a register or stay within the same register. The students’ 
responses were coded according to whether they performed 
partial treatments, complete treatments, partial conversions 
or complete conversions.

The findings show that Question 2 was more difficult 
than Question 1: twice as many students completed 
Question 1 correctly compared to Question 2. It was argued 
that Question 2 was more challenging because students 
had to complete two sets of conversions and two sets of 
treatments. The results of these transformations had to be 
synthesised together to produce an answer.

It was also found that Question 3 was more challenging 
than Question 1 was. Seventy-nine students obtained correct 
answers for Question 1 and only 47 obtained correct, or 
close to correct, answers for Question 3. It was argued 
that one factor could be the inverse nature of Question 3, 
whilst Question 1 was a direct problem. The other factor 
could be that students needed to complete the conversion 
transformations for Question 3 before the treatment 
transformations. Furthermore, because the conversions were 
bigger hurdles, more students could not progress further. The 
students encountered the treatment transformations first in 
Question 1. More students succeeded with this hurdle than 
with the first hurdle in Question 3, allowing them to progress.

Duval’s theory that conversions are more challenging than 
treatments is supported by the findings in this study. When 
the attrition rate is examined at each stage in each of the three 
questions, there were clear patterns in the performance of 

the students. On  Question 1 and Question 2, 59% and 42%, 
respectively, of the group that started conversions were able 
to complete them. This compares to approximately 90% of 
the group who started treatments who were able to complete 
at least one treatment. In addition, only 34% of the group 
who started conversions for Question 3 were able to complete 
them, whereas 94% of the group who started treatments 
were able to complete them. This shows that completing the 
conversions was harder than completing the treatments in all 
three of the questions. 

Furthermore, this study supports Duval’s (2006) examples 
in linear algebra that show that the direction of conversions 
also plays a role in the difficulty level of questions. He writes 
that ‘when the roles of source register and target register 
are inverted within a semiotic representation, the problem 
is radically changed for students’ and that ‘performances 
vary according to the pairs (source register, target register)’ 
(p. 122, brackets added). This was true for Question 1 and 
Question 3. 

In Question 1, if one considers the group of 134 who 
completed the treatments, then 79 of these (or 58%) succeeded 
in completing the conversions when the movement was 
from z0 to P(Z < z0). In Question 3, when the movement was 
from P(Z > z0) to z0, the success rate was 34% (50 of the 148 
had identified some sort of p-value). This shows that the 
students found the second conversion more difficult. If one 
considers the percentages for the whole group of 290, then 
79 of the 290 (or 27%) were able to complete conversions for 
Question 1 whilst only 50 of the 290 (or 17%) were able to 
complete conversions for Question 3. 

Implications of the findings
Duval (2006) differentiated between treatments and 
conversions and commented that ‘we cannot deeply analyse 
and understand the problem of mathematics comprehension 
for most learners if we do not start by separating the two 
types of representation transformation’ (p. 127). 

This study has also shown that conversions and treatments in 
this problem offer different levels of challenges to students. 
Therefore, educators should note the additional challenge of 
moving between systems of representations. The findings 
suggest that educators may need to support conversion 
transformations more than treatment transformations to help 
learners to overcome the challenges.

One aspect that deserves notice is that this group of students 
did not receive any computer-aided instruction, nor could 
they work through computer simulations of normal curves, 
as normally happens in probability and statistics modules 
nowadays. 

If they had had some exposure, they might have had a better 
idea of the visual aspects of the normal distribution curve and 
may have been able to switch between representations more 
easily. Applets or other computer simulation activities could 
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allow students to engage with the properties the different 
representations reveal. They could also help students to 
explore situations that show links between the changes in the 
z-scores with the changes in the area values in the different 
modes of representation. 

Drawing on Zazkis et al.’s (1996) VA model, perhaps such 
opportunities will help students move more effortlessly 
between the different registers, thus reducing the barriers 
related to carrying out conversion transformations. 

The solutions to these questions involved coordinating two 
different registers, which were initially separate. However, 
Zazkis et al. (1996) suggest, in their VA model, that even 
though movement between two modes may start as distinct 
and separate, they eventually merge. Zazkis et al. confine 
their discussion to the movement between the acts of 
visualisation and analysis. However, we can apply it to the 
two registers that we have identified here to suggest that, 
at some point, the students will regard the combination 
of these two registers as one that enriches their ‘cognitive 
architecture’ (Duval, 2006), and which will enable them 
to move on to further layers of movement between more 
complicated registers.

Finally, this article delved into students’ engagements with 
the treatment and conversion transformations associated 
with one particular problem. Readers may want to consider 
whether one could look at other areas in similar ways and 
whether they could help to explain the students’ difficulties 
in those areas.

It is hoped that this study will encourage other researchers 
to look for evidence to support or contradict these findings 
in other areas. Additionally, it is hoped that such further 
research would help to illuminate further the challenges 
that learners experience when they work with problems that 
involve moving across different registers of representation.
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