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The concept of proof is central to meaningful learning of mathematics, but is hard for students 
to learn. A serious misconception dominant amongst students at all levels of schooling is that 
empirical arguments are proofs. An important question, then, is the following: What knowledge 
might enable teachers to help students overcome this misconception? Earlier research led to 
construction of a significant but rather incomplete ‘knowledge package’ for teaching in this 
area. Major elements of this knowledge package are summarised and its further development 
is contributed to by discussing a research-based instructional intervention found to be effective 
in helping secondary students begin to overcome the misconception that empirical arguments 
are proofs. Implications for mathematics teacher education are considered. 
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Introduction
A large body of research shows that students of all levels of schooling (including high-attaining 
secondary students) ‘prove’ mathematical generalisations by using empirical arguments (e.g. 
Chazan, 1993; Coe & Ruthven, 1994; Healy & Hoyles, 2000; Senk, 1985; Sowder & Harel, 1998), 
whereby ‘empirical arguments’ are those that purport to establish the truth of a generalisation 
by validating it only in a proper subset of all possible cases in its domain. Yet, the fact that a 
generalisation is found to be true in some cases does not guarantee − and thus does not prove 
− that it is true for all possible cases. This is a fundamental difference between an empirical 
argument and the notion of proof in mathematics (Stylianides, 2007b). However, many students 
have difficulty understanding this distinction.

In addition to establishing conclusively and convincingly the truth of a generalisation, a proof 
can also help someone understand why the generalisation is true. A proof’s potential to promote 
conviction (justification) and understanding (explanation) in part accounts for it being considered 
central to meaningful learning in mathematics (Ball & Bass, 2000, 2003; Hanna, 2000; Harel & 
Sowder, 2007; Stylianides, 2008; Stylianides & Stylianides, 2008). According to Harel and Sowder:

[m]athematics as sense-making means that one should not only ascertain oneself that the particular topic/
procedure makes sense, but also that one should be able to convince others through explanation and 
justification of her or his conclusions. 

(Harel & Sowder, 2007, pp. 808–809)

Unless students realise the limitations of empirical arguments as methods for validating 
generalisations, they are unlikely to appreciate the importance of proof in mathematics (Stylianides 
& Stylianides, 2009). In order to achieve this learning objective, however, teachers must have good 
knowledge in the area of proof, for the quality of learning opportunities that students receive in 
classrooms depends on the quality of their teachers’ knowledge (Ball, Thames & Phelps, 2008; 
Goulding, Rowland & Barber, 2002; Ma, 1999). What knowledge, then, might enable teachers to 
help their students begin to overcome the misconception that empirical arguments are proofs? 

Knowledge for teaching proof
Following Shulman’s (1986, 1987) influential work on the nature of teachers’ knowledge for 
teaching, a significant body of mathematics education research has begun to unravel the kinds of 
knowledge that teachers need for effective mathematics teaching. Shulman’s work has stimulated 
at least two major and related research strands in the mathematics education literature on teacher 
knowledge. 

The first research strand has examined the mathematical demands that mathematics teaching 
places on teachers’ knowledge (e.g. Ball & Bass, 2000, 2003; Ball et al., 2008; Davis & Simmt, 2006; 
Ma, 1999), and has helped identify important mathematical ideas essential for teachers to know in 
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order to support student learning of particular mathematical 
topics or concepts, such as proof (for a study that focused 
on proof, see Stylianides & Ball, 2008). This strand informs 
the field’s understanding of teachers’ mathematical (subject 
matter) knowledge about proof, one of three broad kinds of 
teacher knowledge for teaching proof considered here. 

The second research strand stimulated by Shulman’s work 
has examined students’ common ways of thinking about 
particular mathematical ideas, helping identify important 
student conceptions (including misconceptions) that 
are essential for teachers to know in order to help their 
students develop their current conceptions. The extended 
mathematics education research on students’ conceptions 
of proof (e.g. Chazan, 1993; Coe & Ruthven, 1994; Healy & 
Hoyles, 2000; Knuth, Choppin, Slaughter & Sutherland, 2002; 
Senk, 1985; Sowder & Harel, 1998; Stylianides & Al-Murani, 
2010) informs understanding of teachers’ knowledge about 
students’ conceptions of proof, the second broad kind of 
teachers’ knowledge for teaching proof considered here. 
This kind of knowledge can be regarded as an example 
of an aspect of Shulman’s notion of pedagogical content 
knowledge, namely, knowledge ‘of what makes the learning 
of specific topics [in this case proof] easy or difficult’ for 
students (Shulman, 1986, p. 9). 

The third broad category of teacher knowledge considered 
in this article, pedagogical knowledge for teaching proof, 
has received significantly less research attention than the 
other two, even though also related to Shulman’s work. Prior 
research has offered few insights into pedagogical practices 
that are important for teachers to know and implement in their 
classrooms to help students develop conceptions of proof that 
better approximate conventional understanding. Such fine-
grained, domain-specific pedagogical knowledge in the area 
of proof can be regarded as an example of another aspect of 
Shulman’s notion of pedagogical content knowledge, namely 
knowledge of ‘the ways of representing and formulating 
the subject matter that make it comprehensible to others’ 
(Shulman, 1986, p. 9). 

Effective teaching of proof requires at least these three broad 
kinds of knowledge, which are interrelated. For example, 
good knowledge about students’ conceptions of proof is not 
possible without a robust understanding of the mathematical 
ideas that underpin these conceptions. Similarly, a teacher’s 
ability to implement pedagogical practices in the classroom 
to help students develop their conceptions of proof requires 
a robust understanding of what the students’ conceptions are 
and other forms (more advanced) that these can take.

What follows is a summary of what the field of mathematics 
education currently considers important for teachers to know 
in relation to the three broad kinds of knowledge, focusing 
on the common student misconception that empirical 
arguments are proofs. This is used to discuss how the field 
might develop a more comprehensive knowledge package 
for teaching in this area. I use the term knowledge package 

to describe a cluster of related kinds of knowledge (about 
mathematics, students and pedagogy) that are important for 
teachers to have in order to teach effectively a particular idea 
in their classrooms.1 

Mathematical knowledge about proof
In our review of prior literature on teachers’ mathematical 
knowledge about proof for teaching (Stylianides & Ball, 
2008), we identified understanding the distinction between 
empirical arguments and proofs to be an important 
element of this knowledge. Unless teachers at all levels of 
schooling develop a good understanding of this distinction, 
it is unlikely that large numbers of students will overcome 
their misconception that empirical arguments are proofs. 
According to Martin and Harel: 

[i]f [elementary] teachers lead their students to believe that a few 
well-chosen examples constitute a proof, it is natural to expect 
that the idea of proof in high school geometry and other courses 
will be difficult for the students. 

(Martin & Harel, 1989, pp. 41−42)

Also, elementary teaching practices that promote or tolerate 
a conception of proof as an empirical argument instill mental 
habits in students that significantly deviate from conventional 
mathematical understanding in the field. Dewey (1903, p. 
217) cautioned educators against such practices when he said 
that whatever the preliminary approach to learning, it should 
not inculcate ‘mental habits and preconceptions which have 
later on to be bodily displaced or rooted up in order to secure 
proper comprehension of the subject’.

Knowledge about students’ conceptions of proof
A significant body of research has investigated students’ 
conceptions of proof and developed various taxonomies of 
these (e.g. Balacheff, 1988; Sowder & Harel, 1998); these in turn 
inform our understanding of what is important for teachers 
to know. Good knowledge about students’ conceptions 
of proof can help teachers evaluate their students’ current 
understandings about proof, and thus prepare teachers 
to design instruction that aims to help students develop 
conceptions of proof that better approximate conventional 
understanding. 

The following is a taxonomy (hierarchy) of students’ 
conceptions of proof, presented in increasing level of 
mathematical sophistication (for elaboration, see Stylianides 
& Stylianides, 2009): 

•	 Naïve empirical conception: Validating a mathematical 
generalisation (pattern, conjecture, etc.) by checking a 
proper subset of all possible cases in its domain, selected 
primarily on the basis of convenience.

1.Ma (1999) used the term knowledge package to describe networks of relationships 
amongst different concepts that a teacher must understand in order to make proper 
decisions about which concepts are required for the learning of other concepts, 
which concepts can be learned simultaneously, etcetera. Thus, Ma used knowledge 
packages to describe concept maps or organising structures within teachers’ 
mathematical knowledge for teaching. My use of the term is broader than that: 
it can include, but is not limited to, concept maps that show the relationships 
between proof and other closely connected notions such as pattern, conjecture, 
and argument. 
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•	 Crucial experiment conception: Validating a mathematical 
generalisation by checking a proper subset of all the 
possible cases in its domain; these cases are not selected on 
the basis of convenience but rather based on some kind of 
rationale, notably the search of possible counter-examples 
to the generalisation. 

•	 Nonempirical conception: Recognising empirical 
arguments as insecure methods for validating 
mathematical generalisations; being able to understand 
and write proofs.

Naïve empiricism and crucial experiment are two kinds 
of empirical arguments (Balacheff, 1988), the former 
implying no awareness of the possibility that the examined 
generalisation could be false. Accordingly, although both 
represent an empirical approach to validating mathematical 
generalisations, the first is less advanced than the second. The 
nonempirical conception includes several stages, the most 
advanced being students’ ability to understand and write 
proofs. This article focuses on what might be considered to 
be the first stage of a nonempirical conception – recognising 
the limitations of empirical arguments as insecure methods 
of validation, and seeing the need to learn about more secure 
methods (i.e. proofs).

Pedagogical knowledge for teaching proof
Prior research has developed a useful basis about general 
pedagogical practices for engaging students in mathematical 
reasoning, argumentation, and proof (e.g. Ball & Bass, 2000, 
2003; Stylianides, 2007a, 2007b; Stylianides & Ball, 2008; 
Yackel & Cobb, 1996; Zack, 1997). However, this body of 
research needs to be developed further before it can inform 
design of effective instruction to help students develop more 
accurate conceptions of proof, including the nonempirical 
conception. 

For example, in our earlier work (Stylianides & Ball, 2008), we 
elaborated on the importance of teachers using a variety of 
proving tasks that can offer students learning opportunities 
to develop an understanding of different proving strategies 
and reasoning skills. Although implementation of particular 
proving tasks in the classroom can support generation of 
different kinds of arguments, thus offering an opportunity 
to teachers and students to discuss the differences between 
empirical arguments and proofs, it is unclear how this 
discussion can be organised to help students overcome their 
deeply rooted misconception that empirical arguments are 
proofs. Indeed, prior research and practice have shown that 
addressing this misconception is a stubborn problem in 
mathematics education, even at university level (Goulding 
& Suggate, 2001; Martin & Harel, 1989). This problem cannot 
be addressed without a carefully designed instructional 
intervention. 

By instructional intervention is meant a purposeful and 
cohesive collection of activities (and respective 
implementation strategies) for achieving particular learning 
outcomes. Ability to successfully implement an instructional 
intervention in the classroom to help students begin to 
overcome the misconception that empirical arguments are 

proofs would be an essential element of teachers’ pedagogical 
knowledge about proof and, by implication, an important 
complement to the existing knowledge package for teaching 
proof.

What could such an instructional intervention look like, and 
what demands would successful implementation thereof 
place on teachers’ knowledge? A research-based instructional 
intervention found to be effective in helping students begin 
to overcome the misconception that empirical arguments are 
proofs is discussed in the next section. This will exemplify also 
the point that successful implementation of the instructional 
intervention requires good knowledge about mathematics 
and students – emphasising the inextricable relationships 
amongst the different kinds of knowledge comprising the 
knowledge package for teaching proof.

An instructional intervention
Background 
In a four-year design experiment in an undergraduate 
mathematics course in the United States of America (for 
discussion on design experiment methodology, see e.g. 
Schoenfeld, 2006), Gabriel Stylianides and I developed an 
instructional intervention. We showed this to be effective 
in helping undergraduate students begin to understand the 
limitations of empirical arguments and to see an ‘intellectual 
need’ (Harel, 1998) for learning about more secure methods 
of validation (i.e. proofs) (Stylianides & Stylianides, 2009). 
Presented at a later stage in this article is how a secondary 
mathematics teacher implemented a modified version of 
the original instructional intervention in a Year 10 class in 
England (14–15-year-old students) to achieve the same 
learning goals. 

Implementation of the intervention by the secondary 
teacher was part of a school-based project organised as a 
design experiment, and following up on the aforementioned 
university-based design experiment. I conducted the 
school-based project in collaboration with two secondary 
mathematics teachers in two classes in a State school in 
England over a period of two years (when the students 
were in Years 10 and 11). The project aimed to generate 
theoretical and practical knowledge about how secondary 
teachers can better support students’ learning of proof, and 
focused on high-attaining students. Given the findings of 
prior research that even high-attaining secondary students 
in England possessed weak understanding of proof (Coe & 
Ruthven, 1994; Healy & Hoyles, 2000; Küchemann & Hoyles, 
2001−2003), and limited research knowledge on how to 
improve students’ understanding of proof, I considered it 
strategic to focus on a student population that would offer 
better chances for success (high-attaining students), as a first 
step in a long-term research programme.

The theoretical framework underpinning the design and 
implementation of the focal instructional intervention is 
elaborated on in Stylianides and Stylianides (2009, pp. 
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316−324). The implementation of the intervention by the 
secondary teacher lasted approximately 60 minutes, and 
extended over two consecutive lessons. The teacher followed 
detailed lesson plans that I prepared and discussed with her 
prior to the lessons; our discussion led to minor modifications 
of the lesson plans, primarily in order to accommodate her 
timetable constraints (Stylianides, 2009a).2 

Whilst reading the description of implementation of the 
intervention, I invite the readers to consider this question: 
What knowledge was it important for the teacher to have in 
order to successfully implement the intervention in her class? 
I will return to this question later in the article.

Overview of activities in the intervention
The intervention included three activities: the Squares 
Problem, the Circle and Spots Problem, and the Monstrous 
Counter-example Illustration (refer to Figures appearing 
respectively throughout the article). The teacher used these 
three activities to facilitate students’ progression along 
a ‘learning trajectory’ (Simon, 1995; see also Clements & 
Sarama, 2004) from a naïve empirical conception, to a crucial 
experiment conception, to a nonempirical conception. Each 
of these three stages in the learning trajectory corresponds to 
a conception in the taxonomy discussed earlier.

Activity 1: The Squares Problem
The hardest part of the Squares Problem (Figure 1) was part 
three, which asked students to find and explain their answer 
for the number of different 3-by-3 squares in a case that was 
difficult for them to check practically (n = 60). The teacher 
made sure that the students understood what the problem 
said, and then asked them to work on it in small groups. 

In small groups the students identified the pattern that the 
number of different 3-by-3 squares in an n-by-n square was 
given by the formula (n – 2)2. They verified the pattern for 
n = 4 and n = 5, and some of them for n = 6 as well. Based 
on this confirming evidence, they concluded that the 
pattern would hold for all values of n, including n = 60. 
Thus the students validated the pattern empirically on the 
basis of naïve empiricism. The whole-group discussion that 
followed further illustrated dominance of the naïve empirical 
conception in the class, with all small groups answering the 
three parts of the problem using the formula (n – 2)2. 

After some discussion about the meaning of the formula, the 
teacher (following the lesson plan) asked the students each 
to write down their thoughts about whether and why they 
could be sure that applying this formula would give the 
correct answer for part three of the problem. Some illustrative 
responses from students in one of the small groups were as 
follows:  

2.The description of the implementation is a shortened and slightly adapted version 
of the description that was previously published in a teachers’ journal (Stylianides, 
2009a), and is used here with permission from both editors. Its use here is different 
and serves a new purpose, namely to explore issues about teachers’ knowledge for 
teaching proof. Readers can also find the PowerPoint slides and lesson plans that 
the secondary teacher used in implementing the intervention in Stylianides (2009a).

Because we have found a formula and tried it against smaller 
squares so we can make sure that the formula is right [Bob].

I am sure that this solution works because it worked for every 
one we did [Calvin].

I am sure that the answer is correct because it has been proved 
for a number of smaller grids [Dan].

(Stylianides, 2010a, pp. 10–11)

These comments were representative of those of the rest of 
the class. The students were convinced of the truth of the 
pattern on the basis of naïve empiricism; the pattern worked 
for the first few cases and so they felt it would also work 
for n = 60. 

After the students’ individual reflections, the teacher 
proceeded with the next item on the lesson plan, which was 
to summarise the students’ written responses. The teacher’s 
summary was based on a quick inspection of students’ 
written responses as she circulated during their individual 
reflection time. Accuracy of the teacher’s summary was 
confirmed by a more careful analysis of students’ responses 
by both her and me at the end of the lesson:

‘I get a feeling that most of you have said, “Well, I think we have sort 
of answered this question that 582  is the right answer: we have found 
a pattern by checking smaller grid sizes and then we have used that 
pattern, assuming that it would continue all the way up to 60-by-60.” 
That’s the stage where we are right now: we’ve seen a pattern working, 
somebody said they tried the 6-by-6 and it worked for that too, and so 
we continued our pattern up to the 582.’

(Stylianides, 2010a, p. 11)

The state of student conceptions of proof in the class, as 
described in the aforementioned summary (where naïve 
empiricism predominated), had been anticipated in the 
lesson plan and was consistent with findings of prior research 
on the issue. 

After the teacher’s summary, the class moved on to the next 
activity. According to the lesson plan, the issue about the 
correctness of the pattern in the Squares Problem would 
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1. How many different 3-by-3 squares are there in the 4-by-4 square above?
2. How many different 3-by-3 squares are there in a 5-by-5 square?
3. How many different 3-by-3 squares are there in a 60-by-60 square? Are

Source: Adapted from Zack, V. (1997). ‘You have to prove us wrong’: Proof at the elementary 
school level. In E. Pehkonen (Ed.), Proceedings of the 21st Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4 (pp. 291–298). Lahti, Finland: 
University of Helsinki

FIGURE 1: The Squares Problem. 

you sure that your answer is correct? Why?
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remain tentatively unresolved. The class would revisit and 
resolve the issue after the students had been assisted to 
realise the limitations of empirical arguments (both naïve 
empiricism and crucial experiment). Our intention was for 
the students to realise the limitations of empirical arguments 
on their own, after experiencing a series of ‘cognitive 
conflicts’ (see Stylianides & Stylianides, 2009) and reflecting 
on situations in the next two activities, where empirical 
methods of validation were inadequate (for the readers’ 
information, I note that the [n – 2]2 pattern in the Squares 
Problem was actually correct).

Activity 2: The Circle and Spots Problem
The teacher introduced the Circle and Spots Problem (Figure 
2), and helped the students understand what it said. She 
discussed with them the meaning of the terms maximum 
and non-overlapping regions, and clarified for them that spots 
meant points and that the phrase around the circle referred to 
the circle’s circumference. She also mentioned that the points 
on the circumference did not have to be equidistant. Then the 
teacher asked the students to work on the problem in their 
small groups. 

In our planning it had been anticipated that, similar to what 
students had done in the Squares Problem, they would check 
simpler cases, identify a pattern, trust the pattern based on 
naïve empiricism, and apply it to offer a definite answer for 
n = 15 (where n stands for the number of points). However, 
there is a key difference between the two problems: unlike 
the emerging pattern in the Squares Problem, which is true, 
the emerging pattern in the Circle and Spots Problem fails 
for n = 6. Our plan was for the teacher to use the anticipated 
cognitive conflict that students would experience with 
the unexpected discovery of the counter-example in order 
to help them move from the naïve empirical to the crucial 
experiment conception. 

After about 10 minutes of small group work the teacher 
brought the class together and asked the students whether 
they thought they had an answer for n = 15. Mac said his group 
thought the formula included powers of 2. The teacher asked 
the class to state the maximum number of non-overlapping 
regions they found for different numbers of spots, and drew 
a table on the board with the following numbers: 4, 8, and 16, 
for n = 3, 4, and 5 respectively. Then she pointed out to the 
class that as Mac had mentioned, the values were all powers 

of 2; in each case, the power was one less than the number 
of spots: 22 for n = 3, 23 for n = 4, and 24 for n = 5. The teacher 
asked: ‘So what will it be for 15 spots, then?’

Several students offered to answer the teacher’s question. 
Based on what I observed during students’ small group 
work, I presumed they would propose application of the 2n – 1 
formula for n = 15. However: 

(Stylianides, 2010a, pp. 12–13)

As she talked, the teacher used a PowerPoint slide to illustrate 
a case in which the maximum number of non-overlapping 
regions for n = 6 was 31, noting also that this number of 
regions was the maximum one could get with 6 spots.3 She 
also noted that if one drew the spots in a regular hexagon, 
the maximum number of regions would be 30, which is again 
smaller than 32. Then, following the lesson plan, she asked 
the students to write down their thoughts on what the Circle 
and Spots Problem had taught them. The same three students 
as quoted before wrote as follows:

You can’t always trust a formula until you have tested it many 
times over for lots of different examples [Bob].

This test has taught us that if you see a pattern [it] doesn’t make 
it correct [Calvin].

The circle and spots tells us that we can’t always trust a formula 
that works on the first few [Dan].

(Stylianides, 2010a, p. 13)

As suggested by these reflections, which were again 
representative of the whole class, the students had started to 
move away from naïve empiricism. For example, Dan started 
feeling uneasy trusting a pattern based on checks of the first 
few cases. Also, Bob’s comment approximated the crucial 
experiment conception, since he seemed to raise a concern 
about the number and nature of cases one had to check before 
trusting a pattern.

3.The question in the Circle and Spots Problem asked whether there is an easy way to 
tell for sure what the maximum number of non-overlapping regions into which the 
circle can be divided is for n = 15 (see Figure 2). Although the students’ inability to 
generate 32 regions for n = 6 did not guarantee that it was impossible to generate 
this number of regions with 6 spots, it did suggest that the emerging pattern offered 
an insecure way to find the maximum number of regions for n = 15. In this sense, 
the teacher’s explanation to the class that the maximum number of regions for 
n = 6 was 31 (which is true) should be interpreted as a confirmation of students’ 
emerging view that the pattern they identified for n ≤ 5 offered an untrustworthy 
means to answer the question for n = 15, rather than as an authoritative act to 
impose conviction of a certain truth in her class. After all, the class did not have the 
means to prove the complex formula that describes the correct pattern. 

Place different numbers of spots around a circle and join each pair of spots by 
straight lines. Explore a possible relation between the number of spots and 
the maximum number of non-overlapping regions into which the circle can be 
divided.

When there are 15 spots around the circle, is there an easy way to tell for sure 
what is the maximum number of non-overlapping regions into which the circle 
can be divided?

Source: Adapted from Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. 
London: Addison-Wesley

FIGURE 2: The Circles and Spots Problem.
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Ken: [said loudly] ‘Can I just say that is wrong, because on 6 
[spots] there are only 30 [regions].’ 

Teacher: ‘We were about to say that the answer would be 2 to the power 
of 14. However, you are telling me that for 6 spots it doesn’t 
work out to be ... With this pattern for 6 six spots it would be 
2 to the power of 5, that would be 32, but did anyone manage 
to find this number of spots?’ [Some students said they 
found 31.] 

‘When we were back to the Squares Problem, we said that 
because the pattern worked for some of the different grids, the 
5-by-5, 6-by-6 squares, and so on, we were willing to trust it. 
But this time we have shown that it works for 3, it works for 
4, it works for 5, but actually, Ken, you are right: if we had 
6 spots on a circle and we joined them all up, the number of 
non-overlapping regions that we get is not what we expect to 
get, it’s not 32. It’s actually 31.’
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Indeed, an important issue for many students at this stage 
of the lesson was how many cases would be enough for 
them to check before trusting a pattern. This issue had been 
anticipated in our planning, and we prepared a PowerPoint 
slide with the following fictitious student comment, that the 
teacher used to orchestrate discussion: 

The Circle and Spots Problem teaches me that checking 5 cases is 
not enough to trust a pattern in a problem. Next time I work with 
a pattern problem, I’ll check more cases to be sure.

(Stylianides, 2010b, slide 1)

The teacher invited reactions to this comment from the class. 
As examples of responses, Dan suggested trying spread cases, 
such as for 1 spot, 75 spots and 100 spots, and Larry said: ‘You 
should test it [the formula] as many times as you have time to do.’ 
The teacher asked Larry: ‘So when you have tested it as many 
times as you have time to do, can you then trust it?’ Larry revised 
his response: ‘No … not 100 per cent!’ Then Pauline said: ‘Try 
it out with smaller numbers and bigger numbers.’ The teacher 
observed that Pauline’s comment was similar to Dan’s earlier 
one. Indeed, the two comments were similar and illustrative of 
the crucial experiment conception, which predominated in the 
class at this stage of the intervention.

Activity 3: The Monstrous Counter-example Illustration
The teacher introduced the Monstrous Counter-example 
Illustration4 (Figure 3) on a PowerPoint slide, which she 
presented in segments to give to the students a chance to 
process the information. Once the students were comfortable 
with the meaning of the statement, the teacher showed the 
counter-example. The students were amazed and experienced 
a new cognitive conflict, for they had not anticipated that a 
pattern that held for so many cases (of the order of septillions) 
could ultimately fail. 

The teacher then directed the students’ attention to their 
previous discussion about the fictitious student comment: 

(Stylianides, 2010a, p. 15)

The previous discussion illustrates that the students began 
to develop distrust in empirical arguments of any kind, 
including crucial experiment, and proposed checking the 
pattern indefinitely. Yet whilst students began to realise the 
limitations of empirical arguments, they lacked knowledge 
of more secure methods of validation. This caused frustration 
in some, as illustrated in Adam’s comment to the effect 
that one could die whilst checking cases before being in a 

4.The name ‘Monstrous Counter-example’ was not mentioned in the class; this name 
is used in the article for ease of reference to the illustration.

position to trust a pattern. Thus we may say that the students 
reached a point where they saw an intellectual need to learn 
about more secure validation methods, that is, they started 
to reason within the realm of the nonempirical conception, 
which was the intended endpoint of the intervention. It is 
beyond the scope of this article to give details about what 
happened next in the class.  

Ethical considerations
The data for this article were collected when I held an 
academic fellowship at the University of Oxford.  The data 
collection and broader study were scrutinised according to 
the University’s procedures for ethical approval, which met 
the British Educational Research Association and British 
Psychological Society standards. School, teacher, and student 
participation in the study was voluntary and was solicited 
through consent forms to the school’s head teacher, the 
school’s head of mathematics, the teachers, their students, 
and the students’ parents or guardians. All student names 
mentioned in the description of the instructional intervention 
were pseudonyms.

What knowledge was important for the teacher to 
have to successfully implement the instructional 
intervention in her classroom?
I return now to the question I invited the readers to consider 
whilst reading the description of implementation of the 
instructional intervention. The elements of mathematical 
knowledge about proof and those of knowledge about 
students’ conceptions of proof discussed previously were 
necessary for successful implementation of the instructional 
intervention. Specifically, if the teacher had difficulty in 
understanding the idea that empirical arguments are not 
proofs (cf. mathematical knowledge about proof), she would 
most likely have accepted students’ empirical arguments 
as proofs in the Squares Problem, and would have seen 
no purpose in proceeding with the rest of the instructional 
intervention. Similarly, if the teacher did not understand 
the taxonomy of student conceptions of proof and how its 
different components compare in terms of mathematical 
sophistication (cf. knowledge about students’ conceptions 
of proof), she would have had difficulty evaluating her 
students’ thinking at different stages during the intervention. 
For example, without this knowledge she might not have 
recognised the crucial experiment approach to validation that 

Consider the following statement:

The expression 

 1 + 1141n2, where n is a natural number

never gives a square number.

People used computers to check this expression and found out that it does not 
give a square number for any natural number from 1 to 30 693 385 322 765 657 
197 397 207.

BUT

It gives a square number for the next natural number!!!

Source: Adapted from Davis, P.J. (1981). Are there coincidences in mathematics? The 
American Mathematical Monthly, 88, 311–320. doi:10.2307/2320105

FIGURE 3: The Monstrous Counter-example Illustration.
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Teacher: ‘We said in the Circle and Spots Problem that, okay, it’s not 
enough to just check a few cases, you need to try different 
ones. Well, this expression, what does this tell us?’ 

Emily: ‘If you kept trying, you might have to go that high until you 
find one [a counter-example].’

Teacher: ‘But I can imagine that it took the computer quite a long time 
to check all of those cases. And when do you stop checking?’

Larry: ‘When you’ve found one!’ [Several students laughed.]
Teacher: ‘And when do you trust a pattern then?’

Adam: ‘When you cannot find one, until you are dead!’

doi:10.2307/2320105
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surfaced in students’ work on the Circle and Spots Problem 
as a significant progression in students’ learning, compared 
to the naïve empirical approach that dominated their earlier 
work on the Squares Problem. 

Despite the importance of the teacher’s mathematical 
knowledge about proof and about students’ conceptions of 
proof, as explained earlier, these two kinds of knowledge 
are by themselves inadequate to capture the breadth of 
knowledge that she used (consciously or not) during 
implementation of the intervention. The teacher also drew 
on a strong pedagogical knowledge, some elements of which 
were generic and characteristic of her broader teaching 
practice: for example, her good questioning strategies 
and ability to create and maintain a positive classroom 
environment in which the students felt comfortable 
contributing and challenging ideas, making mistakes, and 
so on. In addition to these generic elements, however, the 
pedagogical knowledge which she exhibited included at 
least two key elements that were specific to the intervention. 

These two key elements, which presumably would be 
required by other teachers who might successfully implement 
the intervention in their classrooms, are discussed next.

Element 1: Understanding how the three activities fitted 
together to form a coherent whole and to support students’ 
progression along the intended learning trajectory
The three activities formed a coherent whole that supported 
students’ progression along the intended learning trajectory. 
Research on prior iterations of the instructional intervention 
showed that possible changes in organisation of the activities 
in the intervention are unlikely to have such a powerful 
and positive effect on students’ learning (see Stylianides & 
Stylianides, 2009, pp. 331–333). For example, this research 
suggested that if the teacher omitted the Circle and Spots 
Problem and went directly from the Squares Problem to the 
Monstrous Counter-example Illustration, many students 
who at the time held the naïve empirical conception would 
treat the Monstrous Counter-example in the illustration 
as an exception, that is, as an extreme case outside of 
their experience. Accordingly, the counter-example in the 
illustration would fail to become ‘pivotal’ for students (see 
Zazkis & Chernoff, 2008); that is, it would fail to generate 
a cognitive conflict for them, thereby having no substantial 
effect on their naïve empirical conceptions.  

More generally, a teacher would need to understand the over-
arching idea which permeated the choice and sequencing of 
activities in the intervention, namely to confront students 
with a series of cognitive conflicts, each linked to a pivotal 
counter-example and intended to facilitate students’ 
progression to the next conception in the intended learning 
trajectory. The counter-example in the Circle and Spots 
Problem corresponded to a case that was immediately outside 
of the convenient set of cases that (based on past experience) 
students with the naïve empirical conception would check in 
this problem (n ≤ 5). As a result, the discovery of the counter-
example (for n = 6) had good potential to challenge (as it did) 
students’ naïve empirical conception, thereby facilitating 
their progression to the crucial experiment conception.

At that stage students considered, as we saw in the previous 
section, that more strategically selected checks would help 
discover possible counter-examples to pattern problems. In 
other words, they felt that crucial experiment would offer a 
secure method of validation. Students’ crucial experiment 
conception was then challenged by the counter-example in 
the Monstrous Counter-example Illustration. This counter-
example corresponded to a remarkably large case that 
one would not normally expect to discover even if one 
strategically selected which cases to check. The new counter-
example was pivotal for the students and facilitated their 
further progression to the nonempirical conception. 

To conclude, a teacher would have to understand that 
possible changes in the organisation of activities in the 
intervention would probably disrupt the intended series of 
cognitive conflicts, thereby having a negative effect on the 
potential of the intervention to support the intended learning 
trajectory. The choice and sequencing of activities in the 
intervention were purposeful and based on an empirically 
tested theoretical framework for how instruction can generate 
cognitive conflicts for students in the area of proof by means 
of pivotal counter-examples (see Stylianides & Stylianides, 
2009, pp. 319–323). 

Element 2: Understanding the nuances of implementing 
the activities – The notion of ‘conceptual awareness pillars’
Understanding the organisation of the activities in the 
sequence is important, but is nevertheless inadequate to 
support successful implementation of the intervention by 
itself. Successful implementation also requires that teachers 
understand the nuances of implementing the activities 
and, in particular, the following important premise that 
underpinned their design. Students are more likely to 
experience a cognitive conflict in the area of proof when 
there is a sharp contrast between their existing conceptions 
of proof and a situation that contradicts these conceptions: 
the more aware students are of their existing conceptions, 
the more likely it is that they will experience a cognitive 
conflict when they encounter a counter-example intended to 
challenge these conceptions (Stylianides & Stylianides, 2009). 

Specifically, in order to help the students become more aware 
of their conceptions of proof at different stages during the 
intervention, the teacher used (following the lesson plans) 
four ‘conceptual awareness pillars’, that is, ‘instructional 
activities that aim[ed] to direct students’ attention to 
their conceptions about a particular mathematical topic’ 
(Stylianides & Stylianides, 2009, p. 322), in this case proof. 
The teacher used conceptual awareness pillars both before 
and after the two counter-examples, which were intended 
to generate cognitive conflicts for students. The conceptual 
awareness pillars that came before the counter-examples 
aimed to prepare students for the upcoming cognitive 
conflicts, whilst those that followed them aimed to focus 
students’ attention on the validation issues raised by the 
counter-examples and on thinking about possible ways to 
resolve the cognitive conflicts.
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The first conceptual awareness pillar was at the end of the 
Squares Problem, when the teacher asked the students to 
respond to the prompt about whether and why they could 
be sure that applying the formula (n – 2)2 for n = 60 would 
indeed give the correct answer to part three of the Squares 
Problem. By each student writing down their reasons for 
their certainty about the correctness of the formula, the 
students became more aware of their validation methods at 
the time (predominantly naïve empirical).

The second conceptual awareness pillar was again at the end 
of the Squares Problem, when the teacher reported back to 
the students the dominant (most common) validation method 
in the class (according to her analysis of their individual 
responses to the prompt in the first conceptual awareness 
pillar). With this report, the teacher helped the students 
become even more aware of the validation method that 
predominated in the class at the time, thereby preparing them 
to experience a cognitive conflict when they encountered the 
counter-example in the Circle and Spots Problem.

The third conceptual awareness pillar followed the counter-
example in the Circle and Spots Problem, and took the form 
of a class discussion around the fictitious student comment 
on how many cases would suffice to be checked before 
one could trust a pattern in mathematics. By orchestrating 
a discussion around this fictitious comment, the teacher 
helped direct students’ attention to the implications of the 
counter-example in the Circle and Spots Problem for their 
conceptions about validating patterns in mathematics. As 
shown in the earlier description of implementation of the 
intervention, this discussion resulted in several students 
resolving the prior cognitive conflict by progressing to the 
crucial experiment conception. By articulating their ideas of 
what it meant for them to validate a pattern in mathematics, 
the students became more aware of their new conceptions 
of proof, thereby reaching a state of mind amenable to 
experiencing (as intended) a new cognitive conflict in the 
context of the Monstrous Counter-example Illustration. 

The fourth (last) conceptual awareness pillar followed the 
presentation of the Monstrous Counter-example Illustration, 
and took the form of a new class discussion around the 
same fictitious student comment as before. By orchestrating 
this discussion, the teacher directed her students’ attention 
to issues of validation as opposed to other possible issues 
they could consider that would not be directly relevant to 
the goals of the lessons (e.g. the issue of using computers in 
mathematics). In addition, the teacher used the discussion 
to focus her students’ thinking on the implications of the 
Monstrous Counter-example Illustration for the veracity 
of the conceptions of proof they articulated in their earlier 
discussion of the fictitious student comment (predominantly 
in the form of crucial experiment). Consideration of these 
implications and the ways in which they could be resolved 
resulted in the class progressing to the nonempirical 
conception of proof.

To conclude, a teacher would have to understand the 
rationale for including all four conceptual awareness pillars 
in the intervention, so that she or he could implement 

them in the classroom without jeopardising their effect on 
students’ learning experience. Research on prior iterations of 
the instructional intervention showed that possible omission 
of some or all of these conceptual awareness pillars is likely 
to weaken the potential the two counter-examples in the 
intervention have to be pivotal for students and to create the 
intended cognitive conflicts (Stylianides & Stylianides, 2009). 

Conclusion
This article focused on the common and deeply rooted student 
misconception that empirical arguments are proofs, and 
aimed to contribute to development of a more comprehensive 
knowledge package for teaching proof. Specifically, the 
importance of expanding teachers’ knowledge to include, 
in addition to knowledge about mathematics and students, 
fine-grained, domain-specific pedagogical knowledge that 
can allow them to help students overcome this misconception 
was highlighted. The implementation of a research-based 
instructional intervention found to be effective in helping 
secondary students begin to overcome this misconception 
was discussed, and two key elements of pedagogical 
knowledge for teaching proof that are important for teachers 
to have when they implement the intervention in their 
classrooms were identified.  

Although the two elements of pedagogical knowledge 
identified are specific to the focal intervention, the notions 
of pivotal counter-examples and conceptual awareness pillars 
that underpin these elements are generic and could very 
well find application in other instructional interventions, not 
only in the area of proof but also in other areas of the school 
curriculum where students have persistent misconceptions. 
It is also important to recognise that these two elements of 
pedagogical knowledge are based (implicitly or explicitly) on 
certain premises about how students learn mathematics best, 
and how teaching can support that learning. For example, 
a premise that underpinned both elements (as well as the 
design of the instructional intervention as a whole) was that 
deeply rooted student misconceptions cannot be changed 
simply by ‘telling’ from the teacher, but rather by purposeful 
didactical engineering and careful design of activities that 
can drive students through a series of cognitive conflicts. 
Thus, a different perspective on teaching and learning could 
lead to the design of a different instructional intervention, 
which in turn could require different elements of pedagogical 
knowledge from the teacher. Yet, the limited progress that 
teaching practice and research have made thus far to address 
the pervasiveness amongst students of the misconception 
that empirical arguments are proofs elevates the merit of 
the specific instructional intervention, which has opened a 
window of optimism by showing how it might be possible 
to attack this stubborn problem in students’ mathematical 
education.

Students tend to have several other deeply rooted 
misconceptions in the area of proof, and this creates 
many challenges for educators in designing instructional 
interventions to successfully address them. Indeed, it took us 
five research cycles of design, implementation, analysis and 
refinement over a four-year period (Stylianides & Stylianides, 
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2009) before we managed to theorise and develop the 
instructional intervention, a modified version of which was 
presented in this article. It would therefore be unrealistic to 
expect teachers to develop such interventions on their own, 
and also the knowledge about how they could successfully 
implement the interventions in their classrooms. How can 
the field of mathematics teacher education support teachers 
in promoting student learning of proof?

One way would be to make ‘educative curriculum materials’ 
(Davis & Krajcik, 2005) available to teachers, which can 
incorporate existing research knowledge about instructional 
interventions for promoting student learning of proof, like 
that discussed here. By definition, educative curriculum 
materials would not only present the activities in the 
instructional interventions, but also help teachers develop 
the kinds of knowledge (about mathematics, students and 
pedagogy) that could allow them to implement effectively 
these activities in the classroom. However, despite the 
important role that educative curriculum materials can play 
in promoting teacher knowledge for teaching proof, there is 
still a long way to go in the development of such materials. 
For example, research has shown that a popular reform-
oriented textbook series in the United States offered limited 
support to teachers about how to implement the proof tasks 
included in the series in their classrooms (Stylianides, 2007c).5

Finally, another way in which the field could support teachers 
to acquire important knowledge for teaching proof would be 
to integrate into teacher preparation programmes a coherent 
set of learning experiences for prospective teachers, that: (1) 
would address all elements of a comprehensive knowledge 
package for teaching proof; and (2) would also consider 
prospective teachers’ affective worlds, notably their beliefs 
about teaching proof. With regard to the former, we saw, for 
example, that various elements of the specific knowledge 
package discussed here are interconnected, and therefore 
that possible consideration of only some of these elements 
is likely to be insufficient to prepare teachers for successful 
implementation of the respective instructional intervention. 
With regard to the latter, it is important to help prospective 
teachers develop beliefs about proof that are consistent with 
desirable school-based instructional practices and objectives 
for teaching proof to students (e.g. National Council of 
Teachers of Mathematics, 2000). Incompatible teacher beliefs 
are likely to hinder development of these practices and 
promotion of these objectives (Thompson, 1984). 
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