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In this article, we share our combination of analytical concepts drawn from the literature with 
a set of grounded framing questions for thinking about differences in the nature of coherence 
and connections in teachers’ mathematical discourses in instruction (MDI). The literature-
based concepts that we use are drawn from writing focused on transformation activity as a 
fundamental feature of mathematical activity. Within this writing, the need for connections 
between stated problems and the representations introduced and subsequently produced 
through transformation steps are highlighted. Drawing from four empirical episodes located 
across primary and secondary mathematics teaching, we outline a set of framing questions 
that explore coherence and connections between these concepts, and the ways in which 
accompanying explanations work to establish these connections. This combination allows us 
to describe differences between the episodes in terms of the nature and degree of coherence 
and connection.
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Introduction
Teachers’ mathematical discourses in instruction (MDIs), essentially the mathematical aspects of 
what teachers say, do and write as they interact with learners in mathematics classrooms, are a key 
feature of classroom practice. Typically, these MDIs include a problem, a selected representation 
that is subsequently transformed, and explanations and justifications for the representations 
selected and transformations performed. Our interest in this article is in developing a language 
that can be used to describe a range of MDIs. This interest is driven by our need to understand 
MDIs that seem to us to disrupt coherence and connection in mathematical text in a range of 
ways, and thus impact on what mathematics is made available to learn.

Transformation of representations, through manipulations within and across different 
representation forms, is a central feature of mathematical activity (Duval, 2006) and, therefore, of 
MDIs. Solving a problem in school mathematics often involves a set of steps through which one 
representation is transformed into another. For example, completing the square is comprised of a 
series of transformation steps that can act upon a quadratic function as input representation, if the 
stated problem is to find the turning point of the function. Consider the problem:

Find the turning point of  f (x) = x2 − 8x + 9 

The first step to solving this stated problem could be to recognise that rewriting a quadratic 
expression as a perfect square, plus or minus some constant, allows us to ‘see’ vertical and 
horizontal shifts with respect to the parent function, and so the turning point, more easily. We 
would thus rewrite the function in the form f (x) = a(x − p)2 + q by completing the square:

 f (x) = x2 − 8x + 9
        = x2  − 8x + 16 –16 + 9
        = (x  − 4)2 − 7

What is important for this transformation activity1 is that within the MDI, the input representation 
introduced, the representations produced through transformation activity, and the accompanying 
explanations connect with each other and cohere with the stated problem. Our observations, across 
primary and secondary classrooms within our respective projects, suggest that such coherence or 
connection is frequently, but varyingly, disrupted within MDIs.

In this article, we share our development of an empirically derived analytical language (elements 
of which are italicised above) that allows us to make visible a range of disruptions to connection 

1.Our use of the term ‘transformation activity’ coheres with Duval’s (2006) use of the term, which refers to transformations within and 
across registers. It is more inclusive than Kieran’s (2004) notion of transformation, which is restricted to transformation of algebraic 
expressions whilst maintaining equivalence across these manipulations.
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and coherence that come into play across four contrasting 
teaching episodes. We focus here on input objects, 
transformational activity and accompanying explanations in 
order to ‘see into’ the micro-level production of mathematics 
in classrooms through describing differences in the nature 
and degree of coherence and connection and to consider 
the consequences for what is made available to learn. This 
micro-level focus on specific episodes within lessons follows 
our observation of the occurrence of disruptions at this 
level, rather than at the broader level of lessons or lesson 
sequences that have been taken up in prior research (e.g. 
Sekiguchi, 2006).

In order to present our thinking on making aspects of 
connection and coherence visible within transformation 
activity, we begin with a brief overview of the literature. 
We draw on writing focused on transformation activity and 
representations as these actions and objects are at the centre 
of all our episodes and, as noted already, at the heart of 
mathematical activity more generally. We also summarise 
evidence that points to the shortcomings that characterise 
practices in which transformation steps are emphasised at 
the expense of gaining understanding of the representations 
they act upon. From this review, we outline the key concepts 
that we found helpful in beginning to pull apart some of the 
range of procedural practices that we were working with. 
Centrally, we home in on the stated problem, the selected 
input representation, subsequent sequences of transformation 
steps, and the interim and final representations produced in 
this sequence. These concepts are all covered in the literature 
we review.

Somewhat absent in this literature is a focus on the MDIs 
that accompany transformation activity. Teaching involves 
the giving of accompanying explanations alongside 
transformation and so, unlike the (often predictably) 
piecemeal learner discourses that are in focus in much of the 
literature on transformation-oriented activity, one expects 
MDIs to be both coherent and connected, and to provide 
some of the rationales for the representations selected and 
transformation activity that is enacted. As noted above 
however, we see this expectation disrupted relatively 
frequently, and in a range of different ways. In order to 
consider the nature of these disruptions to coherence, we use a 
tentative set of framing questions, drawn from our grounded 
analysis of the episodes presented in this article, to analyse 
and differentiate the transformation activity in four selected 
teaching episodes. This could be criticised as somewhat 
circular: developing grounded framing questions from a 
dataset, and then using them to analyse the same dataset. 
Our aim in doing this is to share this set of literature-drawn 
concepts and grounded framing questions in order to start 
conversations across the mathematics teaching and teacher 
education communities that can help to build a more robust 
language for thinking about what constitutes coherence and 
connection within mathematics teaching. We have already 
been through several iterations of concepts and framing 
questions, and have seen that our current formulation can be 
applied to a significantly broader group of episodes that we 
have encountered. 

Describing transformation activity – a literature 
review
Duval (2006), from a semiotic perspective, describes 
mathematical activity as comprised by the transformation 
of one semiotic representation into another. For Duval, 
mathematical transformations can happen within, or across, 
registers: encompassing natural language, numeric, symbolic 
and algebraic notations, graphical representations, geometric 
figures and tabular presentations. For our purposes, the focus 
is on the representations and transformations selected and 
produced within transformation activity, the turning of one 
representation into another, either within or across registers.

Paying attention to the representations selected and 
produced through transformation activity is described by 
Haapasalo and Kadijevich (2000), cited in Haapasalo (2003), 
as important within transformation activity underlain by 
strong procedural knowledge. Strong procedural knowledge, 
for them, involves:

dynamic and successful utilization of particular rules, algorithms 
or procedures within relevant representation forms. This usually 
requires not only the knowledge of the object being utilized, but 
also the knowledge of format and syntax for the representational 
system(s) expressing them. (p. 98)

This synchronous attention to both representational objects 
and transformation techniques is often described as lacking 
in school mathematics.

An important second thread in the mathematics education 
literature is highly critical of the ways in which transformation 
activity has come to be configured within classrooms. 
Artigue (2011), in her article for UNESCO on the challenges 
of extending basic mathematics and science education for 
all students, refers to international surveys to describe how 
schooling is very often unstimulating because the teaching of 
mathematics is framed by:

•	 formal teaching, centred on learning techniques and 
memorizing rules whose rationale is not evident to the 
pupils

•	 pupils [who] do not know which needs are met by the 
mathematics topics introduced or how they are linked to 
known concepts. (p. 21)

Implied within Artigue’s formulation is a situation within 
which representations tend to be backgrounded, whilst 
transformation techniques are foregrounded. The need 
for a sense of the ‘problem’ that drives the selection of 
representations and the transformations enacted on them (the 
‘raison d’être’) in coherent ways is highlighted. Drawing from 
the analytical work of Duval, and the critiques presented here, 
we see that the concepts of stated problem, input and subsequent 
representations produced through transformation activity are 
highlighted as fundamental to mathematical activity.

The international literature base is replete with evidence 
of the consequences of pedagogies based on these kinds of 
practices for mathematical learning (Thompson, Philipp, 
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Thompson & Boyd, 1994). De Lima and Tall (2008) provide 
evidence of learners enacting transformations of algebraic 
representations based on the ‘embodied actions they perform 
on the symbols, mentally picking them up and moving them 
around, with the added “magic” of rules’ (p. 3). Such actions 
indicate inattention to the representations being operated 
on and the syntax of the registers these representations are 
located in; they thus frequently produce incorrect answers. 
Learner performance in South Africa across all phases attests 
to similar problems (Department of Basic Education, 2011a, 
2011b). More problematically, there is evidence in South 
Africa of some of these actions occurring in the context of 
teaching rather than at the level of learner working (Mhlolo, 
Venkat & Schafer, 2012).

This leads to the need to focus on MDIs. Instructional 
explanation has been described as a ‘commonplace’ of 
mathematics teaching (Leinhardt, 2001), and described in 
terms of the ‘orchestrations of demonstrations, analogical 
representations and examples’ (Leinhardt, Zaslavsky & 
Stein, 1990). The word ‘orchestration’ points to the coherence 
and connection between problems and representations 
that we are focusing on, but does not, in itself, provide 
descriptors of what might constitute ‘good’ orchestration. 
Similarly, whilst coherence was identified as a characteristic 
seen more frequently in some Asian countries within the 
TIMMS-video data (Hiebert et al., 2003), what constitutes this 
coherence within teaching is not detailed. Rowland (2012), 
in using the distinction made in Leinhardt’s (2001) work 
between disciplinary and instructional explanations, notes 
that deductive reasoning characterises the former, whilst the 
need to ‘help students learn, understand and use knowledge’ 
through the use of ‘carefully devised analogy’ that render 
explanations ‘more accessible and more palatable’ (p. 59) 
is key to instructional explanations. In this more learning-
focused category, there is a need to ‘establish’ rather than 
‘state’ deductive connections, in order to support learner 
understanding of critical links. Thus, we looked at the 
nature of both disciplinary and instructional explanations 
in MDIs through framing questions that would allow us to 
analyse differences in connection and coherence between our 
episodes.

In the teaching episodes we present in this article, all drawn 
from previously published work in the South African 
landscape, practices are exemplified at a range of problematic 
levels, beginning in Artigue’s terrain (backgrounding 
of problems and representations and foregrounding of 
transformations), and moving to significantly deeper 
problems in relation to coherence and connection. Our 
framing questions allowed us to disaggregate episodes in 
ways that provided some windows into understanding what 
constitutes coherence and connection. 

Concepts and framing questions
Mathematical processing begins with a stated problem (SP). 
Stated problems have to be solved through the introduction 
of an initial input representation, which could be a symbolic 

statement, visual representation, et cetera. In each of our 
episodes, we refer to this introductory offering to be operated 
upon as the input representation (IR). Transformation 
activity (TA), constituted by the transformation steps enacted 
on this input representation, and the interim representations 
produced, then ensues. Given our focus on teaching, these 
are associated with accompanying explanations from the 
teacher.

We focus on the detail of transformation steps enacted 
and the interim representations produced through these 
transformations, noting, in the first instance, whether these 
representations retain connection to the input representation. 
It is worth noting here that algorithms in mathematics do 
sometimes break this connection at interim stages, and 
reinstate it at the final stage; the long division algorithm 
provides a well known example of this (see Long [2005], for 
an elaboration on the differences between procedures and 
algorithms, and the deep mathematical structures underlying 
algorithms). We note this point to emphasise that these 
breaks in connection need not be innately problematic if the 
scope of application to representations and the mathematics 
underlying the transformation sequence are considered 
within the accompanying explanation. We therefore look 
at teacher explanations for whether or how they establish 
connections between representations and transformations, 
coherence with the stated problem, and reference to the 
scope of application and mathematical structure of the 
transformation being dealt with. 

The framing questions are presented below:

•	 Does the input representation cohere with the stated 
problem by providing an appropriate representation to 
transform?

•	 Does transformation activity produce representations that 
connect in mathematically defensible ways with the input 
representation? Does this happen (1) across all interim 
representations or (2) at final representation?

•	 Does transformation activity, linked with the teacher’s 
accompanying explanation, serve to establish connections 
between its steps at each stage and the input representation?

Our questions reflect more basic notions about transformation 
activity than have been dealt with in the existing literature 
that deals with both cognition and semiotics (Duval, 
2008). In the literature we have summarised, the notion 
of coherence and connection in teachers’ selections and 
transformations of representations is largely assumed, 
and critique focuses on the absence of rationales for the 
transformations selected. Our episodes suggest the need 
to suspend this assumption and focus on the detail of 
problem-representation-transformation connections as they 
play out in teaching. Firstly, we look for whether the input 
representation presented to transform coheres with the stated 
problem. We then ask questions about how interim and final 
representations produced within transformation activity 
connect to the input representation. This often involves 
transformation activity that produces representations that 
maintain equivalence between the representation acted on 
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Learners:         [Chorus] Positive.
Nash:            It’s a positive gradient … we can see there’s our 

y-intercept, there’s our x-intercept [points to the 
points (0; -3) and (2; 0) respectively].

After a brief discussion on the labelling of points on a graph, Learner 
2 and Learner 3 ask Nash:

Learner 2: Sir, is this the simplest method, sir?
Learner 3: How do you identify which side must it go, 

whether it’s the right-hand side. [Nash interrupts]
Nash: [Response to Learner 2] You just join the two dots.
Learner 2: That’s it?
Nash: Yeah … the dots will automatically … if it was 

a positive gradient it will automatically … if this 
was [refers to the line just drawn] negative … that 
means this dot [points the x-intercept] will be on 
that side [points to the negative x axis] … because 
if the gradient was negative, how could it cut on 
that side? [Points to the positive x axis]

Learner 2: Is this the simplest method sir?
Nash: The simplest method and the most accurate
Learner 4: Compared to which one?
Nash: Compared to that one [points to the calculation of the 

previous question where the gradient and y-intercept 
method was used] because here if you make an 
error trying to write it in y form … that means it 
now affects your graph … Whereas here [points to 
the calculations he has just done on the dual intercept 
method] you can go and check again … you can 
substitute … if I substitute for 2 in there [points to 
the x in                 ] I should end up with 0.

Our interest here is in how the teaching of the dual intercept 
procedure unfolds through transformation activity and its 
accompanying explanation. Nash presents a function               
(an input representation) where the stated problem is to draw 
the graph of this line. This representation does cohere with 
the stated problem, and the preceding activity also shows 
that producing a line using the transformation sequences that 
have already been taught can be done, but is long-winded, 
making an alternative method useful. Thus the need for an 
alternative transformation sequence is motivated in Nash’s 
accompanying explanation. He then presents the steps to 
follow to obtain the coordinates of each of the intercepts. All 
the interim representations and the final representation do 
connect appropriately and cohere with the stated problem. 

Whilst Nash’s advocacy of the dual intercept method in all 
instances blocks some of the flexibility that a more selective 
match between stated problem and input representation 
would allow, and also does not provide ways of dealing with 
special cases (horizontal, vertical lines and lines through 
the origin), important features of the input and subsequent 
representations and their connections do remain in focus 
across Nash’s lesson sequence. For example, the fact that 
the gradient can be derived from the application of the dual 
intercept transformation steps to a linear equation to produce 
the associated graph is explained in instructional terms, using 
the move between algebraic and graphical representations 
to emphasise how given information can be used to derive 
missing information.

3 2 6x y− =3 2 6x y− =3 2 6x y− =

3 2 6x y− =3 2 6x y− =3 2 6x y− =

and the representation produced. At a deeper level though, 
we can also ask whether this transformation activity, linked 
with the accompanying explanation, establishes connections 
with the input representation rather than simply assuming, 
or stating, the connection. 

In the next section, we present episodes drawn from 
previously published work.

Episodes
Episode 1
This episode was reported in Adler and Pillay (2007) and 
Adler (2012) and is drawn from a study by Pillay (2006). Nash 
(pseudonym), a secondary school teacher, is described as 
well respected in his school, at which student performance in 
Grade 12 national mathematics examinations was considered 
successful. The episode below is taken from the third in a unit 
of eight consecutive lessons on linear functions in a Grade 10 
class. In Lesson 1 and Lesson 2, Nash had dealt with drawing 
the graph of a linear function first from a table of values, and 
then using the gradient and y-intercept method. All the linear 
function examples that were worked through in the first two 
lessons were in the standard form                  .  

In Lesson 3, he moves on to demonstrate how to draw the 
graphs of functions that are not expressed in standard form. 
He begins with a few examples (e.g.             ), using the 
gradient-intercept method, and the manipulative work 
needed to get these into the standard form                . This 
serves as motivation for the greater simplicity of the dual 
intercept method for drawing straight-line graphs. He 
returns to a function they had worked on,            , and 
begins a discussion of ‘dual’ meaning ‘two’, eliciting from 
learners that the two intercepts are where the graph cuts the 
x and y axes. He demonstrates how to find the coordinates of 
the y-intercept by calculating the value of y when x = 0 and, 
similarly, the coordinates of the x-intercept. He writes (0; -3) 
and (2; 0) on the chalkboard and proceeds to sketch the axes, 
explaining how you can ‘estimate’ where the points are on 
each of the axes. He plots the two points and continues: 

Nash: … all I have to do join these important points and 
I got [states and labels the line]               – wasn’t 
that much easier? – there’s less mathematics 
to do [points to the calculations from the previous 
question] [than] when you come to write it in y 
form. Simple, first make your x equal to zero – 
that gives me my y-intercept. Then the y equal to 
zero gives me my x-intercept. Put down the two 
points – we only need two points to draw the 
graph.

Then a learner asks a question:

Learner 1: You don’t need all the other parts?
Nash: … What’s important features of this graph? … 

we can work out … from here [points to the graph 
drawn] we can see what the gradient is … is this 
graph a positive or a negative? 

y mx c= +

y mx c= +

2 4 2y x− =2 4 2y x− =2 4 2y x− =

3 2 6x y− =3 2 6x y− =3 2 6x y− =

3 2 6x y− =3 2 6x y− =3 2 6x y− =
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Episode 2
In this episode, drawn from Askew, Venkat and Mathews 
(2012), a Grade 2 teacher is working on missing addend 
problems using a wheel representation with three concentric 
circles: 7 written on the inner circle, and the numbers 0–7 
placed in random order around the outermost circle in 
separate sectors. Askew et al. state: 

The task explained by the teacher was to fill in the intermediate 
circle with the numbers that needed to be added to the outer rim 
numbers of the wheel to make the number 7. (p. 29)

The stated problem of the lesson, indexed by the title on the 
board Hlanganisa (‘Addition’ in Zulu), is for the class to fill in 
the numbers that need to be added to the numbers on the edge 
to make 7. Initial answers from some of the children indicate 
that they are interpreting the task in terms of addition of the 
numbers shown. In one episode, the teacher is focused on 
the problem: ‘What number is added to 3 to make 7?’ She 
shows the class three open fingers on her hand as she asks 
this, pointing to the 3 on the circle rim, and then shows seven 
fingers as she indicates the need to make 7, pointing to the 7 
in the centre. Some children are seen counting out seven on 
their fingers. When no correct answers are forthcoming from 
the class, the following exchange takes place:

Teacher: Make 7 with your fingers. [Shows seven fingers on 
her hands and several learners seen showing seven 
fingers] Now hide three fingers. [Teacher closes 
three fingers on her hand and asks class to do the same] 
Which number can we add with this 3 to make 7? 
[Teacher’s hand shows four fingers remaining open] 
Now we made 7 and hide 3, and what is left? The 
number that when we will add with 3, we will get 
7. [Teacher goes over and helps a child to close the same 
three fingers and asks her to count what is left]

Learner: 4. [Accepting 4, the teacher then counts out three 
toothpicks at the front as 1, 2, 3, then another 4 
toothpicks as 1, 2, 3, 4. She then counts them altogether 
from 1–7]

Prior to and following this episode, we see instances of 
some learners able to give correct answers. However, we 
also see several learners who appear unaware of how many 
fingers to open, and what to do once they have one of the 
given numbers showing. Here, a stated problem that is 
given in terms of missing addends comes to be ‘funnelled’ 
into a subtraction problem through a transformation step 
and associated explanation, and then verified by adding the 
two numbers as an addition problem. The teacher appears 
aware of the equivalence between missing addend problems 
and subtraction, but this equivalence is not established 
for learners; rather, the equivalence is simply assumed, 
and subsequently verified empirically. Thus, a problem 
stated in terms of missing addends is worked out in terms 
of subtraction-based transformation activity, and checked 
through addition. Essentially, the sum below is presented as 
the stated problem to be solved (though not in this form):

3 +      = 7

whilst the transformation activity instead involves solving 
the following subtraction problem:

7 − 3  = 

It could be argued that in transformation terms nothing 
has gone wrong here, but given that we see several 
learners filling gaps in the follow-up missing addend 
individual activity, with 11 at the centre, simply by 
adding the two numbers seen, there is evidence that 
neither the missing addend nor the subtraction routine 
have actually taken ‘hold’ for broad swathes of the class. 
Instead, the predominant interpretation of the problem 
involves ‘adding’ the two numbers that can be seen, a 
‘putting together’ of the visual instruction to add with the 
numbers seen. Here, we see transformation activity which, 
whilst connected in mathematically coherent terms to the 
input object, does not work to establish this connection. 
The switch to subtraction is followed as an embodied 
imitation in the teacher’s presence, but no explanation for 
establishing this switch as valid is provided; at the same 
time, no interim representational supports or associated 
explanations that link more directly to the stated problem 
are enacted. Essentially, referring back to the literature, 
whilst the disciplinary explanation is coherent, an 
instructional explanation is lacking.

Episode 3
In this episode, drawn from Davis (2010), a Grade 10 teacher 
is working on integer addition sums, such as: -7 + 5. Davis 
describes the teacher’s instructions to the class as follows 
(p. 384):

Teacher: So if the signs are the same ... what do you do? ... 
You take the common sign ... and then ... you add. 
… If the signs are not the same ... what do you do? 
You subtract.

Learners: [Chorus] Subtract.
Teacher: But first you take the sign of the what? The sign 

... of the bigger number. You look at the bigger 
number between the two ... and then you take the 
sign ... of the bigger number.

Learners: [Chorus] Yes.
Teacher: This should always be the case.

As was the case in Episode 1, an ordered set of instructions 
is relayed to the class – ‘first you take ... and then you 
take ...’. Some conditions for the application of transformation 
sequences are established at the outset: essentially ways to 
distinguish the input representation in order to recognise 
which transformation must be selected. Davis (2010), 
discussing this episode in terms of operations (addition) and 
objects (integers), notes that:

The regulative criteria required by the procedure indicate 
that the teacher and learners do not operate directly on the 
mathematical objects and relations being indexed (integer sums). 
They operate, instead on more familiar and intuitive objects and 
relations (‘whole number’ sums). (p. 385)

In terms of our analytical concepts, -7 + 5 is the input 
representation that is transformed through a series of TA 
steps that provide an algorithm for solving the problem. In 
the interim stages, following the instructions would produce 
these representations:
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Teacher:          Calculate the answer to the sum [SP]: -7 + 5 = [IR] 
                 If the signs are not the same ... what do you do? 
                         You subtract. [TA step 1] 
                  [Following this TA step would result in the following 
                         interim representation]: 7 − 5 = 2 
                        You look at the bigger number between the two ... 

and then you take the sign ... of the bigger number. 
[TA step 2] 

                         [Following this TA step would result in the following 
                         final representation]: -2

In this episode, the backgrounding of the input representation 
is more significant than in the previous two episodes. 
Within the transformation sequence that is presented, 
negative numbers simply do not figure. Further, whilst the 
transformation sequence is driven by the need to solve the 
given problem, the algorithm presented enacts steps that 
produce an interim representation that is not equivalent to 
the input object (-7 + 5), even though equivalence with the 
input representation returns at the final stage. Essentially, at 
the interim stage, transformation activity does not establish 
‘reason-able’ connections between representations. As noted 
already, it could be argued that this is not problematic as a 
mnemonic device, given that correct answers across the range 
of input representations specified can be reliably produced. 
However, analyses of South African performance on TIMMS 
items (Howie, 2003) and our own data (Adler, 2011) point to 
multiple basic errors in the realm of both integer calculations 
and algebraic manipulations requiring knowledge of integer 
sum transformations. Further, Thompson et al. (1994) note 
that the orientation to ‘answer-getting’ tends to work most 
reliably only for the learners ‘who understood the problem 
in the first place, and understood it in such a way that the 
proposed sequence of operations fits their conceptualisation 
of the problem’ (p. 9).

In terms of our concepts, the input representation coheres 
with the stated problem, but the interim representation 
produced through the first transformation step does not 
retain equivalence with the input representation, even 
though this equivalence is recovered at the final stage.

Episode 4
Venkat and Mhlolo (2011) present an incident involving a 
Grade 11 teacher working on a data-handling problem based 
on the data table shown in Table 1, the input representation 
introduced in the lesson.

In the process of asking generally about ways in which data 
can be presented, a student mentions the notion of a ‘tally 
table’. Venkat and Mhlolo note the subsequent return by the 
teacher, after several interim episodes focused on a range of 
other stated problems, to the notion of tallying. The teacher 
shifts attention from a focus on the meaning of the frequency 
values in Table 1 with the following question:

OK before we move on, somebody talked about tally OK. Does 
anyone know how to tally the number 8? ... Do you know or you 
want to try? 

Having asked the question, she then adds a further column 
to her frequency table and gives it the title ‘tallies’. She then 
shows the class how to tally the number ‘8’, this being the 

first frequency value in her table. Then, pausing to ask the 
class if they have seen this (pointing to her tally) before, she 
explains further and demonstrates:

OK so it’s one, it’s two, it’s three, it’s four and what happens to 
number five. [Indicates the diagonal line]. And then it’s one, it’s 
two and it’s three. OK. Your tally and your frequencies must be 
of the same number.

In this episode we note that whilst transformation activity 
(producing the tally) does connect to the stated problem, the 
stated problem does not cohere with the frequency table as 
the input representation presented. Thus, whilst equivalence 
is maintained, and indeed emphasised, in the teacher’s 
discourse between the input representation’s frequency 
values and the representation that is produced (the tallies), 
this equivalence in the absence of coherence between the 
stated problem and the input representation tends to nullify 
the equivalence that is produced. 

Table 2 summarises the application of the analytical concepts 
applied to the four episodes.

Discussion
Looking across Table 2, we can see that in relation to the 
analytical framing of transformation activity developed, 
differences in the detail of access to the representations 
and transformations involved emerge. Significantly, some 
episodes reflect more serious disruption of mathematical 
coherence and connection than others. We contend that 
having the discursive resources to see and talk about these 
differences is enabling for our work in teacher education.

In Episode 1, all the criteria are answerable in the affirmative, 
suggesting that basic connections and coherence are in place. 
Nash’s practices, we believe, mirror the kind of teaching 
referred to in our earlier discussion of the literature. The fact 
that Nash is viewed as successful, with learners under him 
viewed as performing successfully, backs up our claim of 
basic connections and coherence. Thus, whilst concepts in the 
literature may well describe Nash’s practice as ‘procedural’, 
the connections and coherence we have identified appear to 
open up access to appropriate transformation activity.

In Episode 2, the key issue is that a missing addend problem 
is assumed to be solvable through manipulating the sum 
into subtraction format. Of course, this is mathematically 
correct, but the transformation from missing addend form to 

TABLE 1: Data table.
No. of children in the family Frequency

0 8
1 14
2 20
3 17
4 10
5 11

Source: Venkat, H., & Mhlolo, M.K. (2011). Objects and operations in mathematics 
teaching – extending our understanding of breakdowns. In T. Mamiala, & F. Kwayisi (Eds.), 
Proceedings of the 19th Annual Meeting of the Southern African Association for Research in 
Mathematics, Science and Technology Education (pp. 246−259). Mafikeng: SAARMSTE
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subtraction form needs to be established for learners through 
explanation and mediating representations that allow for 
the equivalence between the two forms to be appropriated. 
Instead, an assertion or an assumption of equivalence is 
presented, rather than an establishment of the equivalence. 
An outcome of the assumed equivalence appears, in this 
lesson, to be ongoing difficulties with task completion. There 
is a notable absence of the analogical representations that 
Rowland (2012) describes as important within instructional 
explanations: in this instance, representations that provide 
‘direct models’ (Carpenter, Fennema, Franke, Levi & 
Empson, 1999) of the stated missing addend problem. Thus, 
the MDI fails to provide representations that scaffold the 
connection between the missing addend situation and the 
abstract understanding of number relationships needed to 
‘jump’ to subtraction as an appropriate transformation step 
to enact. 

In Episode 3, the problem seen in Episode 2 is further 
compounded by the fact that the first transformation 
step indicated by the teacher’s instructions produces an 
interim representation that does not connect with the input 
representation. Thus, the instruction that seeing one negative 
and one positive number means we have to subtract is 
arbitrary at this stage; it simply has to be remembered, and 
cannot be reasoned. Whilst at the final stage, equivalence 
with the input representation is resurrected, one needs 
to take on trust that this will happen through the interim 
working. As in Episode 2, the transformation activity does 
produce the correct answer with some efficiency. In this case 
though, connections between representations are broken at 
the interim stage. 

In Episode 4, given that the stated problem is tallying, the 
presentation of a frequency table as the input representation 
is inappropriate as an object for the process of tallying to 
act on. Thus, whilst equivalence between the tally graphic 
produced for each frequency is maintained, connections that 
could serve to establish the purpose of tallying processes 
in mathematics are not simply made invisible, but actively 
disrupted. 

Conclusions
Several comments emerge from our analysis. Firstly, we note 
at the most basic level that if the input representation does 
not cohere with the stated problem, this appears to negate 
the possibilities for answering the other analytical questions 
in the affirmative. At the intermediate level, we suggest that 
two criteria allow for further disaggregation:

•	 making transformation steps ‘reason-able’ by establishing 
connections between the representation and its 
transformation

•	 producing transformation sequences that connect across 
representations.

At the highest level, we have episodes that demonstrate 
coherence between the stated problem and the input 
representation, and connections between the representations 
produced through transformation activity where all three 
criteria are met. 

Our sense is that the literature as it stands provides us with 
a discourse that can speak constructively to Nash’s practice, 
but offers few insights into the kinds of limitations seen in 
our other episodes. The analytic concepts and questions that 
we have presented in this article were derived from analysing 
problematic episodes of the teaching of procedures involving 
the transformation of representations. Whilst the framework 
still needs further testing, our application of these concepts 
and criteria to further episodes from our project data sets 
suggests that they may provide some general principles 
for basic coherence and connection within mathematics 
teaching. We therefore offer the concepts and questions 
developed and deployed in this article as a starting point 
that has some generality, and illuminating potential for the 
many classrooms in which the transformation activity that 
fundamentally underlies mathematical activity still appears 
to be problematic.
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