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Current reforms in mathematics education emphasise the need for pedagogy because it 
offers learners opportunities to develop their proficiency with complex high-level cognitive 
processes. One has always associated the ability to make mathematical connections, together 
with the teacher’s role in teaching them, with deep mathematical understanding. This 
article examines the nature and quality of the mathematical connections that the teachers’ 
representations of those connections enabled or constrained. The researchers made video 
recordings of four Grade 11 teachers as they taught a series of five lessons on algebra-related 
topics. The results showed that the teachers’ representations of mathematical connections were 
either faulty or superficial in most cases. It compromised the learners’ opportunities for making 
meaningful mathematical connections. The researchers concluded by suggesting that helping 
teachers to build their representation repertoires could increase the effectiveness of their 
instructional practices. 
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Introduction
Developed and developing countries, including South Africa, have revised their mathematics 
curricula in recent years to take account of what they regard as the knowledge and skills learners 
require to participate in a globalising twenty-first century world. 

There seems to be some agreement that higher order cognitive skills and processes are necessary 
for more equitable educational outcomes and economic productivity (Muller & Subotzky, 2001).

However, the major challenge has been how to convert this noble vision from the written into the 
taught curriculum.

The problem
In South Africa, there has been general public discontent about learners’ actual gains in knowledge 
and skills despite the steady increase in pass rates since the advent of democracy. Muller (2005) 
questioned the credibility of senior certificate pass rates given the opinion that standards have 
actually dropped: 

The largely invisible outcome, invisible to school educators, that is though not invisible to employers 
or university admission officers, was that the schooling system was emitting a cohort or two which had 
reduced opportunities to demonstrate higher-level cognitive skills, had possibly not even been taught 
them and, in far too many cases, therefore did not have them. (p. 43)

This quotation raises two critical concerns: 

•	 that standards have actually dropped despite the upward trend in pass rates
•	 that low-level cognitive skills were intentional or unintentional threats to the social and 

economic health of the nation.

Lolwana (2005) and Edwards (2010) made similar observations about the low cognitive demand 
of mathematical activities and recommended that researchers do more to understand the specific 
cognitive levels in the intended, the tested and the implemented curriculum. 

It is from these observations and recommendations that the researchers saw a potential gap in 
knowledge. With specific reference to classroom practices (the implemented curriculum), this 
article raises the question of the extent to which high school mathematics teachers are creating 
opportunities for learners to acquire cognitively demanding mathematical connections to use in 
problem solving situations.

The researchers’ entry point to this is by conceptualising mathematical understanding. Whilst 
acknowledging that there is no consensus about the meaning of ‘understanding’, Barmby, Harries, 
Higgins and Suggate (2009) suggest three perspectives that the researchers found relevant for 
taking their ideas forward. 
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Barmby, Harries, Higgins and Suggate (2009) argue that one 
shows a deep understanding of mathematics through: 

•	 connections made between different mathematical ideas 
•	 different representations of mathematical ideas
•	 reasoning between different mathematical ideas. 

They suggest that ‘in order to examine someone’s 
understanding of a mathematical concept, it is important 
that we examine the connections that a person makes to that 
concept …’ (pp. 5–6).

Conceptualising a mathematical connection
However, what exactly is a mathematical connection?

Blum, Galbraith, Henn, and Niss (2007) suggest that the 
literature has identified two major types of mathematical 
connections. The first is recognising and applying 
mathematics to contexts outside of mathematics (the links 
between mathematics, other disciplines or the real world). 
The second concerns the interconnections between ideas in 
mathematics. 

Most articles in the literature focus on connections in the real 
world and do not explore the area of mathematical connections 
or interconnectedness within mathematics (Businskas, 
2008). However, learners’ ability to make connections in 
mathematics itself is crucial for conceptual understanding 
(Anthony & Walshaw, 2009b) as well as for application 
outside the discipline. This study aims to contribute to the 
area of interconnectedness within mathematics. 

One can define a mathematical connection broadly as: 

•	 a relationship between ideas or processes that one can use 
to link topics in mathematics

•	 a process of making or recognising links between 
mathematical ideas

•	 an association a person might make between two or more 
mathematical ideas

•	 a causal or logical relationship or interdependence 
between two mathematical entities (Businskas, 2008). 

The literature has often captured these broad views into 
three ways of considering mathematical interconnectedness: 

•	 as a feature of mathematics (a priori − implying that it 
exists independently of the learner) 

•	 as a relationship that the learner constructs
•	 as a process that is part of the activity of doing mathematics.

This article concentrates on the first and last views. The 
researchers note the importance of the ability of learners 
to recognise mathematical connections (Hodgson, 1995). 
However, we concur with Weinberg (2001), who argued 
that, whilst learners might make connections spontaneously, 
one cannot assume that they will make them without some 
intervention.

One should make learners aware of different possible 
mathematical connections. Teachers play a crucial role in 
this intervention because they must teach lessons in ways 

that will enable learners to recognise and make sense of these 
mathematical connections. 

Therefore, the view of the researchers is that considering 
mathematical connections as features (a priori) that exist 
independently of the learner would enable them to judge 
the process (whether or not the teacher was creating 
opportunities for learners to recognise them). Therefore, 
the researchers’ next challenge was to develop a workable 
framework for classroom observations to enable them to 
examine how teachers structured learners’ opportunities for 
making appropriate mathematical connections. 

A framework for thinking about mathematical 
connections in practice 
The researchers borrowed from Businskas (2008). In her 
study, she posed the question: What are the characteristics 
of the explicit mathematical connections that teachers are 
able to articulate from their practice? Following the analyses 
she made of teachers’ responses to her study, she proposed 
a framework for identifying mathematical connections in 
practice. Her model has the five categories that follow:

•	 different representation (DR) as a form of mathematical 
connection 

•	 part-whole relationships (PWR)
•	 connections where A implies B (IM)
•	 connections that show that A is a procedure for doing 

B (P)
•	 instructional orientated connections (IOC) that show how 

certain concepts are pre-requisites for understanding 
related concepts.

These five types of mathematical connections became the 
reference point for trying to understand the nature and 
quality of observed instructional strategies in selected South 
African Grade 11 classrooms. Whilst Businskas (2008) only 
identified possible mathematical connections in practice, 
this study extended this focus because the interest of the 
researchers was also to identify and analyse the quality of 
these connections in practice (i.e. to link connections to their 
cognitive strengths or cognitive demands).

Our focus: Different representations
Whilst the five categories provided the framework for the 
researchers’ broader study, the focus in this article is on 
different representations as types of connections. Barmby 
et al.’s (2009) second view of mathematical understanding 
guided this decision to some extent.

The ability to present a concept in several ways shows a deep 
understanding of that concept. There is a view in the literature 
that recognising and producing alternate representations 
is a particularly fruitful way of conceptualising what a 
mathematical connection is (Gagatsis & Elia, 2004) and that 
the transformation between these representations is a useful 
way of assessing whether learners are making connections 
(Reead & Jazo, 2002). The pedagogical implication is that 
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teachers should use several modes of representation to 
improve learners’ understanding of mathematics and that 
these representations should be accurate and appropriate 
(National Council of Teachers of Mathematics, 2000). 

Therefore, the researchers decided to focus on different 
representations. An important finding in a broader study 
(Mhlolo, 2011) also guided them. It showed that different 
representations were more prevalent than the other types in 
all 20 lessons that the researchers recorded (see Figure 1). 
 
These results seem consistent with earlier classroom 
observations elsewhere. They showed that teachers constantly 
engage in a process of defining and constructing a mental 
image of some mathematical object and use instructional 
representations in the process (Businskas, 2008; McDiarmid, 
Ball & Anderson, 1989; Stylianou, 2010). 
 

Teacher’s representations of connections 
Interpreting a mathematical connection as a recognition of 
two or more alternate representations lies at the intersection 
of research into mathematical connections and research into 
representations (Businskas, 2008). In this intersection, the 
term ‘different representation’ could mean a mathematical 
connection (object) or the ways teachers present the 
mathematical idea (activity or process). The researchers use 
both of these interpretations in this article and felt that they 
had to clarify their position about using these terms. 

In this article, the researchers use the term ‘different 
representations’ (DR) in accordance with Businskas’ (2008) 
definition to refer to an inherent feature of mathematics 
(object) − links, relationships or mathematical connections. 
These relationships exist inherently in mathematics, 
regardless of whether teachers or learners recognise them. 
Businskas posits that this (DR) category comprises the two 
subcategories that follow.

A is an alternate representation of B, where the two 
representations (A and B) of a mathematical concept or 
idea come from any two of the following modes − symbolic 
(algebraic), graphic (geometric), pictorial (diagrammatic), 

manipulative (physical object), verbal description (spoken), 
or written descriptions. For example, the graph of a parabola 
(graphic or geometric) is an alternate representation of 
f(x) = ax2 + bx + c (symbolic or algebraic).

A is an equivalent representation of B, where ‘equivalent’ 
distinguishes between alternate representations and refers to 
concepts that are connected by representing them in different 
ways using the same mode of representation. One example is 
13 + 12 equals 25 and f(x) = ax2 + bx + c equals f(x) = a(x – p)2 + q. 
Another example is defining concepts by rephrasing verbal 
representations or written representations using different 
descriptors.

On the other hand, one uses the term ‘representation’ to refer 
to an activity or process (the teacher’s way of presenting, 
or the teacher’s didactic strategy of converting, inherently 
linked or connected mathematical ideas). In this sense, a 
teacher can ‘represent’ an alternate link or an equivalent link, 
a part-whole relationship or any other similar mathematical 
connection. 

Empirical evidence suggests that this activity of representing 
is a core activity of teaching mathematics (Ball, 2001) 
because the ways teachers represent mathematical ideas are 
fundamental to how people understand and use those ideas. 

The focus of this article is the quality of teachers’ 
representations of mathematical connections. Therefore, a 
question captures its next challenge: How can we begin to 
judge the quality of the alternate or equivalent representations 
(links) the teacher presents in a classroom situation? 

Our conceptualisation of quality in teachers’ 
representations
The third view of Barmby et al. (2009) on mathematical 
understanding guided the researchers as they tried to 
determine the strengths or quality of teachers’ didactic 
strategies. It links connections and the reasoning between 
them. According to Sierpisnka (1996), acts of understanding 
link what one must understand with the ‘basis’ or ‘reasoning’ 
for that understanding. 

‘Basis’ and ‘reasoning’ suggest answering the deeper 
questions of ‘why or how we know’. Andrews (2009) 
combined these notions when he argued that teachers’ 
representations of mathematical connections, which (1) 
articulation, justification and argumentation from the 
teachers and/or (2) pressing for this reasoning from the 
learners accompanied, could lead learners into acquiring a 
deeper understanding of knowledge and skills. 

Anthony and Walshaw (2009a) had a similar view as they 
posited that effective teachers encourage their learners to 
explain and justify their solutions. They ask learners to take 
and defend their positions against the mathematical claims 
of other learners. This causes their attention to shift from 
procedural rules to making sense of mathematics because 
learners try less to find the answers and more to discover the 
thinking that leads to the answers. 
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FIGURE 1: Summary of data counts for all four teachers in different categories.
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According to Squires (2009), the Trends in Mathematics and 
Science Studies (TIMSS) reports also show that teachers, in 
the countries that performed well, placed greater cognitive 
demands on learners by encouraging them to focus on 
concepts and their connections. The teachers in these 
countries maintained this cognitive demand when they 
insisted on justifications, explanations and meanings through 
questioning or other feedback (Zurawsky, 2006). The findings 
from these studies also showed that, in classrooms in which 
teachers set instructional tasks and learners executed them 
at high levels of cognitive demand, the learners achieved 
better on measures of reasoning and problem-solving than 
did learners in classrooms where these tasks became merely 
following the rules, usually with little understanding 
(Squires, op cit).

Our analytical model 
Barmby et al. (2009) provided the researchers with a model. 
The researchers thought that this model incorporated all the 
notions of connections and their strengths through reasoning 
and justification. 

The model used the notion that learners should be fluent 
users of representations. However, the researchers thought 
that the model would be equally useful for analysing 
teachers’ representations of different mathematical ideas in 
class. The researchers felt that conceptualising mathematical 
representations, as Barmby et al. suggested, left an important 
gap because, whilst it captured weak and strong mathematical 
reasoning, it did not seem to capture faulty connections or 
reasoning. 

The researchers felt that this was important, especially in 
the South African context where researchers have identified 
teachers’ understanding of the subject as a problem 
(Adler, 2009; Harley & Wedekind, 2004). The researchers 
hypothesised that one could expect faulty representations 
of connections. Therefore, they proposed adding a broken 
line (see Figure 2) to show a faulty representation of a 
mathematical connection.

Consequently, they adapted the model slightly so that the 
mathematical concept or idea (algebraic equation) becomes 
the alternate representation (symbolic) and the lines show the 
strength with which the teacher connects or links it to another 
alternate representation (the graphical representation).

Using this adapted model of representation, broken lines 
show a faulty representation of a connection, thinner lines 
show a superficial or weak representation of a connection 
and thicker lines show a strong or deep representation of a 
connection. The researchers built on the models of Barmby 
et al. and of Businskas so that their coding of teacher 
representations: 

•	 level 0 (DR0) denotes a representation of a mathematical 
connection in the DR category that was faulty or incorrect 

•	 level 1 (DR1) denotes a representation of a mathematical 
connection in the DR category that was mathematically 
correct but superficial or routinely algorithmic, with no 
further explanation or justification 

•	 level 2 (DR2) denotes a representation of a mathematical 
connection in the DR category that was more than just 
mathematically correct; justification and/or further 
explanation follow. 

The researchers give examples of levels of actual 
representations in the data analysis section of this article.

Methodology 
Sample 
This was a case study involving four Grade 11 mathematics 
teachers. The researchers made video recordings of each 
as they taught a series of five algebra-related lessons. 
These teachers were part of a larger group of teachers who 
had agreed to take part in a large-scale research project 
called ‘implementing curriculum change in previously 
disadvantaged communities’. 

Whilst some of the participating teachers in the broader study 
were not qualified to teach mathematics at Further Education 
and Training (FET) level, the four who provided data for this 
article were. There were two women and two men teachers. 
Their teaching experience ranged from 7 to 10 years. The 
four teachers were from four different schools in previously 
disadvantaged communities in a Gauteng urban area. 

Procedure 
The first author conducted the classroom visits. He observed 
one teacher teaching Number Patterns and the other three 
teaching Functions and Algebra.

The decision to observe lessons on these two areas of 
mathematical content is consistent with the emphasis in 
the curriculum. It specifically requires teachers to structure 
learning experiences and situations to develop these key 
concepts and enable learners to ‘experience the power 
of algebra as a tool to solve problems’ (Department of 
Education, 2003, p. 13). 

Star and Rittle-Johnson (2009) also observed that competence 
in algebra is increasingly being recognised as a critical 
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milestone in the journey from primary to high school. 
International assessments have recorded learners’ difficulties 
in algebra and there is empirical evidence that the transition 
from arithmetic to algebra is a notoriously difficult one and 
presents teachers with several challenges (Blum, Galbraith, 
Henn & Niss, 2007). 

After considering all these factors, the researchers decided to 
find out what it would mean for teachers to make high quality 
mathematical connections in an area that the South African 
national curriculum statement for mathematics (Department 
of Education, 2003) emphasises but which is so notoriously 
difficult for both learners and teachers (Koedinger & 
Nathan, 2004). 

With regard to Number Patterns, Warren and Cooper (2008) 
posit that the links between patterns and algebra have wide 
acceptance. Their argument is that learners begin their study 
of functions in the primary grades as they observe and study 
patterns in nature and create patterns using concrete models. 
Learners in high school then expand their knowledge 
of algebra as they analyse a variety of different types of 
number patterns. 

Validity and reliability
The analytical tool for this study measured the quality of the 
mathematical connections that teachers used as they taught 
certain mathematical concepts in class. 

The researchers initially collected pilot data and then tested 
the tool on the pilot data. During this piloting period, 
two other mathematics experts (one who sets Grade 12 
examinations and one who is a team leader for marking 
them) validated the tool. The researchers presented the tool 
at several professional conferences and Doctor of Philosophy 
(PhD) meetings, where it underwent rigorous peer reviewing 
before taking its final form. 

The researchers addressed the issue of reliability through 
replication because they observed four different teachers 
presenting different content. They obtained similar results 
for the DR0 category as it produced the highest frequencies. 
Other research results from South Africa (Davis & Johnson, 
2007) and abroad (Ball, 2001) corroborated this. This confirms 
the prevalence of DR0 representations in practice. 

Because the researchers observed only four teachers, one 
cannot generalise the findings beyond the cases they studied. 
This is the nature of case studies. However, consistent 
with the objective of the study, the findings could lay the 
principles for making high quality mathematical connections 
in practice. 

Ethical considerations
The Department of Education granted approval to proceed 
with this study under permit T-728 P01/02 U-848. At 
institutional level, the university ethics committee granted 
approval under protocol 2007EC007. At school level, the 

first author received informed consent from the principals, 
teachers and parents of the learners who would participate 
in the study. At both school and individual levels, the 
researchers maintained the participants’ anonymity and 
confidentiality by using pseudonyms (teacher R, M, T and B) 
and the video recordings did not focus on either the teachers 
or the learners. 

Data analysis 
The researchers provided six excerpts from the classroom 
interactions. They coded the teachers’ representations of 
mathematical connections at the three different levels of 
cognitive demand the article presented earlier.

The researchers coded excerpts 1 and 2 as DR0 (faulty), 
excerpts 3 and 4 as DR1 (weak, superficial or rote) and 
excerpts 5 and 6 as DR2 (strong or higher order). 

In their analysis of these six excerpts, the researchers 
showed how they identified the different representations as 
equivalent or alternate (mathematical connections) in each 
case then justified why they placed the excerpts at each level 
of quality. In the broader study of Businskas (2008), from 
which this article draws, she coded some of these excerpts 
more than once (i.e. in the same episode it was possible to 
see a part-whole connection, a generalisation, or an if-then 
connection). Whilst one expects this in a typical classroom 
situation, this article does not discuss these other types 
of connections because it focuses only on alternate and 
equivalent representations. 

Excerpt 1 −Teacher B 
This lesson focused on quadratic functions and on how one 
determines the gradient of a curve at different points on it. 
The teacher began by defining the word ‘calculus’ to the 
learners: 

Teacher: 	 Say for instance I mean it’s calculus. It has the 
word calculate within it. Ok. So we will be 
calculating something but there are rules that we 
need to follow. 

Comment on excerpt 1: The researchers regarded this as 
an example of an equivalent representation where the teacher 
attempted to define calculus by rephrasing it to ‘we will be 
calculating’. She represented the idea of calculus in a different 
way but in the same verbal mode using different descriptors. 

This intended to give the learners an understanding of the 
mathematical idea (of calculus). This was the only definition 
the teacher offered as an introduction to the series of lessons 
that followed. 

The researchers contend that, in the context of differential 
calculus and in the absence of further explanation, this 
representation is problematic because learners might not 
differentiate between calculating as any other mathematical 
operation applies it. It does not offer learners a clear idea of 
what calculus is as a mathematical concept in the context of 
differential calculus. Therefore, the researchers coded it DR0. 
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Excerpt 2 −Teacher R 
This lesson was on multiplying polynomials. The teacher had 
given learners different tasks to complete on the board and 
was summarising the observations.

Teacher:	 We were finding the products of binomials and 
trinomials, but look at the first terms in the second 
expressions [these were quadratic, so the teacher circled 
2a2, a2, 3x2, 4a2 and b2]. The first term is squared. And 
if the first term is squared and we multiply it by 
a binomial, the answer is going to be cubed. The 
two terms in your answer is going to be cubed. 
And this introduces us to something else now. The 
difference between … How do we conclude this? 
You have been saying it right now. The difference 
between two cubes. Let’s go to question number 
3. Did you do it in your books? Let us look at this 
question. We are given: (a + b)(a2 – ab + b2). Should 
we work it out or should we go straight for the 
answer?

Class:	 Noooo, let us work it out. 
Teacher (after the learners had completed it): What are you 
saying [names a learner]?

Learner:	 The answer is a3 + b3.

Teacher:	 What can you say about the answer? What can 
you say about the expression? What are we going 
to call this product [underlines a3 + b3]? We touched 
this yesterday. It’s the difference between…

Class:	 Cubes, squares, terms, trinomials, exponents.	
Teacher:	 This term cubed [circles a3] and this term cubed 

[circles b3]. So it’s a difference between two 
cubes. You got it? Alright. Now we agreed here 
[underlining a3 + b3] that this is the difference 
between two cubes.

Comment on excerpt 2: This is an example of alternate 
representation because the teacher is representing an algebraic 
expression (a3 + b3) verbally as the difference of two cubes. 

The researchers saw defining a3 + b3 as the difference of two 
cubes as mathematically problematic. Therefore, they coded 
this as DR0. They contend that learners were unlikely to 
acquire a mathematically acceptable conceptualisation of the 
difference of two squares or two cubes with a representation 
like this. The researchers did not regard this as ‘a slip of 
the tongue’ because it occurred often throughout the series 
of lessons 

Excerpt 3 − Teacher R 
In the same series of lessons, on multiplying polynomials, 
one learner completed her task as follows:

Learner:	 (3x2 + xy – 2y2)(x + 2y)
3x3 + 6x2y + x2y + 2xy2 – 2xy2 – 4y3

3x3 + 7x2y – 4y3

Teacher:	 What are you saying about her approach? How 
did she approach this? She was finding the 
product of binomials and trinomials using the 
distributive law. Did she apply the distributive 
law? [The teacher was concerned that the learner ‘did 

not’ apply the distributive law correctly because she did 
not re-arrange the two polynomials with the binomial 
on the left: (x + 2y)(3x2 + xy – 2y2). Examples on the 
board, where the binomial was always on the left hand 
side and the trinomial on the right hand side, followed. 
However, in this case the textbook had given the task − 
with the trinomial on the left hand side].

Class:	 Noo [meaning the learner had not applied the 
distributive law when dealing with this task].

Comment on excerpt 3: The researchers contend that 
(3x2 + xy – 2y2)(x + 2y) equals (x + 2y)(3x2 + xy – 2y2) in terms 
of the commutative law of multiplication. However, the 
teacher did not recognise this here. The teacher insisted 
that the binomial must always be on the left hand side, 
suggesting that the learners should have rearranged 
(3x2 + xy – 2y2)(x + 2y) first before multiplying the polynomials. 

Starting with the binomial on the left would achieve the same 
result (as one would have expected and the lesson proved). 
The researchers contend that the representation the teacher 
used here gives a limited conceptual understanding of the 
distributive law because the teacher associated it with a 
specific arrangement of the polynomials (binomial to the 
left and trinomial to the right). Therefore, the researchers 
regarded it as algorithmic, superficial or rote and coded 
it DR1. 

Excerpt 4 − Teacher T 
This lesson focused on factorising binomials and trinomials. 

Teacher:	 [Writes on the board -x2 + 7x – 10]. So today, what 
we are going to do is factorisation where the first 
part has a negative coefficient. Are we together? 
Remember we said that the first number before x 
is the coefficient. What is the coefficient of x here 
[points to -x2]?

Class:	 1, -1 [there is a debate about whether it was 1 or -1, but 
the teacher finally decided that it was 1]. 

Teacher:	 Let’s take that coefficient as what 1. We are saying 
1 × -10 [the teacher now multiplies this coefficient 1 by 
the last term -10 in the trinomial and writes -10 on the 
board]. Remember here we must find the common 
factors of what, -10. Which are the common factors 
of -10? 

Class:	 5 and -2 [learners want to give other factors like -5 and 
2, but the teacher discourages them].

Teacher:	 Let’s say they are the same because we just swap 
the signs. Then, remember when we add those 
two factors they must give us the 7x [term in the 
middle of the trinomial]. Which of these two factors 
will give us 7x?

Class:	 None of them.

Comment on excerpt 4: This is one of the excerpts where the 
researchers coded other forms of connections (like procedural 
connections) when dealing with the factors of -10. However, 
consistent with their focus in this article, they took the view 
that, at the point where the teacher says ‘let’s say they are 
the same’ with reference factors of -10, he is representing an 
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equivalence (i.e. 5 × -2 equals -5 × 2) after swapping the signs. 
The product would indeed be -10 in each case. 

However, in the context of factorising trinomials, the 
researchers argue that it was necessary to think about the 
objective of breaking -10 into its factors. The interest is in 
factors of the last term -10 that will add to the middle term 
+7. Swapping had worked very well before this task because 
the learners were dealing with tasks where the three terms 
of the trinomial were positive. Therefore, the factors were 
also positive. For example, one knows from applying the 
commutative law of multiplication that 2 × 5 equals 5 × 2. 
Similarly, 2 + 5 equals 5 + 2. 

Therefore, suggesting that swapping signs between factors 
would apply equally in the case of 5 × -2 and -5 × 2 is typical 
of rote learning or applying well-rehearsed procedures 
without thinking about them. 

The researchers coded it DR1. They contend that swapping 
signs affects their sums, which relates to the middle term 
when factorising in this context. This task became more 
confusing because the learners had erroneously interpreted 
the coefficient -1 of the first term in this particular trinomial 
as 1.

Excerpt 5 − Teacher B 
This lesson focused on functions and the different ways of 
representing them. 

Teacher:	 So now I have written a function: f(x) = x2 + 1. This 
is what liner or quadratic?

Learner 1:	 It’s quadratic.

Teacher:	 You are saying it’s quadratic How do I identify 
that this is a linear function and this is a quadratic 
function? Why are you saying this is quadratic? 
What if somebody says it is linear?

Class:	 It’s determined by the exponent of x. If x is to the 
exponent 1 we are talking of a linear function. If 
it’s a square it’s quadratic. 

Teacher:	 Okay. It’s quadratic. So in order for you to draw 
this graph what are you going to do?

Learner 2: 	 You can do it in table form.

Teacher:	 How else can you do it if you did not want to do it 
in table form?

Learner 3:	 For some of us with a graphic scientific calculator 
I can just punch in the function and the calculator 
can draw the graph for me.

Teacher:	 [Goes back to the table form]. So we have the function: 
f(x) = x2 + 1. We are going to substitute the x values 
into the function and then we will get what, the 
y values. So we will have [The teacher draws and 
completes the table with the rest of the class.]

Teacher:	 Will this help you to draw the graph and if so 
how?

Learner 4:	 Yes, it will, by drawing the x- and y- axes then 
plotting the points.

Teacher:	 [The teacher asks one child to come to the board]. So 
show us how to draw the graph. [The teacher then 
says] We have drawn the graph of y = x2 + 1.

Comment on excerpt 5: The researchers interpreted this as 
an example of connecting a mathematical idea (quadratic 
function) using alternate representations (verbal, algebraic, 
tabular and graphic). In this excerpt, the teacher did not just 
accept correct answers without explanation or justification. 
She kept pressing for justification or reasoning from the 
learners. Examples are ‘why quadratic’, ‘why not linear’, 
‘how else can you do it’ and ‘will this help’. 

Therefore, it is consistent with how the researchers have 
defined cognitively demanding activities in this article. The 
researchers coded it DR2. 

Excerpt 6 − Teacher M 
This lesson focused on arithmetic or linear sequences within 
the topic number patterns.

Teacher:	 Right, suppose you are given a list of numbers 
starting with [writes 3, 6, 9… on the board]. 
Somebody, tell me the next number.

Learner 1: 	 12.

Teacher:	 Somebody else.

Learner 2:	 12.

Teacher:	 12. They all say the next number will be 12. 
Anybody who does not agree? [The teacher raises 
his hand and pauses. After no other responses, the 
teacher folds his arms]. But, how do we know it’s 12? 
Suppose somebody comes in from a distance and 
says it’s 13? Why 12, why not 13? [Says learner’s 
name].

Learner 3:	 They are multiples of three. 

Teacher: 	 Okay, somebody tell us what the tenth term 
will be.

Learner 4:	 Term 10 will be 30.

Teacher:	 Why? How do we know it is going to be 30?

Learner 5:	 There is a relationship between the term number 
and the value in this sequence and each time the 
term number is times 3 to get the term value.

Teacher:	 So what shall term n be?

Learner 6:	 3n.

Comment on excerpt 6: Here, the researchers contend that 
the teacher gave an equivalent representation or connection 
between a term number 3n and term value 30 in this particular 
sequence. Recognising this equivalence is important for 
determining the general term for a sequence. It is also useful 
for forecasting or predicting unknown term values in the 
sequence. 

Again, the teacher did not just accept correct answers (like 12, 
30 or 3n) without explanation or justification. He insisted on 
justification or reasoning from the learners (‘why 12’, ‘why 

x -2 -1 0 1 2
y 5 2 1 2 5
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not 13’, ‘why 30’, ‘how do we know’ and ‘so what will be 
term n’). 

Therefore, it is consistent with how the researchers have 
defined cognitively demanding representations in this 
article. The researchers coded it DR2. 

Summary of findings 
The researchers transcribed 20 lessons and coded 377 
teachers’ representations in accordance with their coding 
system. A summary of their observations of the DR category 
of mathematical connections follows.
 
Figure 3 gives a comparison of the level of the quality of the 
representations of mathematical connections of each teacher. 

Note that the bars in Figure 3 give data counts and not 
percentages. For example, in the case of Teacher M, the 
researchers recorded faulty connections (DR0) 11 times. They 
then converted them to percentages for the discussion.

The different representations were faulty in as high as 60% 
of the statements (as for Teacher R), while 30% of them 
were rote or routinely algorithmic. This left only 10% of 
the representations with the potential to develop a deep 
understanding of concepts and procedures. 

However, Teacher M’s representations of mathematical 
connections fell into level 2 (higher order) in 61% of the cases 
and into level 0 (faulty) in only 0.5% of the cases. This suggests 
that Teacher M might have created more opportunities for 
learners to develop higher quality mathematical connections 
than did the other teachers. 

The researchers did not intend to delve into causal 
relationships or infer why this was the case. They were 
specifically interested in describing the nature and quality of 
teachers’ mathematical connections. 

Figure 4 gives the summaries for the four teachers. 

This graph shows that most of the four teachers’ 
representations of mathematical connections were either 
faulty (level 0) or superficial (level 1). The differences in the 
heights of the three bars in Figure 4 might not reveal the 
magnitude of the problem.

However, when one considers that level 2 of cognitive 
demand should be the target of classroom practice, then 
combining the levels 0 and 1 bars reveals a cumulative 70% 
off-target in the teachers’ representations. 

Implications 

Given the findings of the study, the researchers argue that 
most learners probably lost opportunities to develop a deep 
understanding of mathematical connections.

The researchers acknowledge the limitations of the study, 
in terms of its generalisability, because of the small sample. 

However, the researchers note that Davis and Johnson (2007) 
made similar observations: that teachers spent most of 
classroom time in South Africa on explaining mathematical 
ideas, principles and definitions. Most teachers ‘briefly 
referred to definitions but without discussing or explicating 
the mathematical reasons for the productions of the 
definitions’ (p. 123). 

Given this consistency in results, the researchers believe that 
helping teachers to build their representational repertoires, 
which consists of metaphors, analogies, illustrations, 
examples, explanations and demonstrations, and with further 
justification and explanation, might improve the effectiveness 
of their instructional practices and create opportunities for 
learners to learn higher order cognitive skills and processes. 

Conclusion
There are developmental lessons that one could learn from 
this study. 

The researchers argue that their results confirm that different 
representations prevail in different categories or forms of 
mathematical connections in practice. This is consistent with 
the literature.

Therefore, they see potential in their results that researchers 
might want to test further, especially in South African 
classrooms. So far, researchers seem not to have identified 
what it means for teachers to enable learners to make strong 
mathematical connections. 

Summaries showing data counts for each teacher (n = 377).

FIGURE 3: Comparison of the levels of quality of the representations of each 
teacher.

FIGURE 4: Comparison of the quality of the representations.
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This could be a possible entry point into teacher support and 
enrichment programmes.
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