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There is a general perception that the South African curriculum statements for mathematics 
create polarity between the ‘old’ and the ‘new’, which does not benefit both the teachers 
and the learners. The new curricula demand a radical shift from the traditional teacher-led 
approaches that teachers are familiar with, yet does not provide a model of what it might 
mean to teach for conceptual understanding. This article aims to provide such a model 
by examining the potential of teaching with variation, which is viewed as an important 
mathematics teaching and learning style. Proponents of the theory of variation claim that how 
teachers make available the object of learning to their students has been neglected yet it has 
a critical influence on learners’ learning. This is important for educators as they struggle to 
make sense of the seemingly contradictory requirements of the new curriculum. In this article 
a discernment unit comprising four variation patterns is used as a tool to analyse a seemingly 
rich teacher-led approach to teaching that was observed in one South African Grade 11 
mathematics classroom. The results of the analysis and implications for theory and practice 
are then discussed. 

Introduction
Teaching approaches associated with the ‘old’ curriculum are characterised as content driven, 
teacher centred, examination focused and transmission based (Brodie & Pournara, 2005) and are 
generally discouraged as they are considered to be inhibitive to learners’ deep understanding of 
mathematics. In contrast, the ‘new’ is characterised as learner centred and arguments in its favour 
claim that learners can benefit immensely from its judicious application. Yet these promises have 
been questioned by critics who doubt that such approaches are appropriate in all cultural and 
resource contexts. South Africa bears testimony to this doubt as numerous reports have shown 
how teachers struggle to implement such approaches (Adler, 2009; Brodie & Pournara, 2005; Long, 
2005; Vithal & Volmink, 2005) and how learners subsequently end up without the envisaged 
knowledge and skills (Schollar, 2004). 

One reason cited for the ‘lack of fit’ between the espoused and implemented curriculum was 
that there has been too much emphasis on the philosophical level where the different ‘isms’ of 
different schools of thought are full of conflicts which are difficult to resolve in order to arrive at 
a consensus (Ling, 2012). In South Africa, Vithal and Volmink (2005) made similar observations 
as they posited that such (new) reforms are driven largely by conjecture, stereotype, intuition, 
assertion and a host of untested assumptions, rather than by research. 

Mayer (2009) contends that 

[o]ur field would be better served by trying to figure out research-based answers to how learning and 
instruction work rather than by engaging in high-level philosophical arguments about which ‘ism’ is the 
best. (p. 197)

Given that the ‘new’ is not often seen, even in well-resourced Western countries in which school 
reform movements have been promoting these ideas for many years, Brodie and Pournara 
(2005) suggest that the next important steps, particularly for research and teacher education, 
are to critique, adapt, modify and complete these visions in ways that enable teachers and 
learners to achieve new ways of working in their classrooms. This article aims at contributing to 
these renewed efforts towards understanding what it might mean to teach mathematics in the 
traditional way whilst creating opportunities for learners to develop deep understanding of the 
subject. The article examines the potential of variation theory as an alternative lens through which 
teaching in the ‘traditional’ way could possibly be modified and adapted into classrooms that aim 
to teach for conceptual understanding. 

Background to the problem
In a previous article (Mhlolo, Venkat & Schäfer, 2012) we analysed 20 lesson transcripts to 
examine the quality of four teachers’ instructional representations of mathematical ideas and 
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the potential therein to create opportunities for learners to 
make connections amongst relatable mathematical ideas. 
This was premised on the view that making connections in 
mathematics was critical for a deep understanding of the 
subject. Lesson transcripts were coded using a three-point 
scale: faulty connections (level 0), weak connections (level 1) 
and the strongest connections (level 2). The results showed 
how one teacher’s representations fell into level 2 in 61% of the 
cases and into level 0 in only 0.5% of the cases as compared to 
the other three, whose representations fell mostly into lower 
levels. This suggested that this teacher might have created 
more opportunities for learners to develop higher quality 
mathematical connections than did the other teachers. This 
was despite the researchers’ observation that the teacher’s 
lessons were generally content driven, teacher centred and 
transmission based, approaches that are not consistent 
with the ‘new’ curricula. Logically, these two opposite 
observations cannot be seen to be simultaneously valid; 
hence, this paradoxical observation triggered this interest to 
search for an alternative lens through which such ‘traditional’ 
teaching approaches could be viewed positively. This article 
is premised on the view that the use of variation in teaching 
mathematics might provide such a lens. The next question 
one might then ask is: What does the theory of variation say?

The theory of variation and its application to 
mathematics teaching
Variation is about what changes, what stays constant and 
the underlying rule that is discerned by learners in the 
process (Leung, 2012). The use of variation in learning and 
awareness was initially proposed by Marton and Booth 
(1997). The theory of variation was subsequently developed 
by Marton and Tsui (2004) as a generic learning theory; over 
the years researchers have refined and applied it over a 
broad spectrum of learning areas. With specific reference to 
mathematics education, 

[a] variation interaction is a strategic use of variation to interact 
with mathematics learning environment in order to bring about 
discernment of mathematical structure. (Leung, 2012, p. 435)

So a mathematics pedagogy that is rooted in variation is 
one that purposefully provides learners with the means 
to experience variation through strategically designed 
activities in order to create a mathematically rich learning 
environment (Leung, 2010) that allows learners to discern the 
object of learning. The ‘object of learning’ is a special term 
in variation theory and does not mean the same as ‘learning 
objectives’, which point to the end of the process of learning. 
Instead the object of learning points to the beginning of the 
process of learning and generally refers to the focus of a 
teaching situation, the thing to which learning is directed, 
that is, ‘what is to be learnt’ (Ling, 2012). It is defined by its 
critical features that must be discerned in order to constitute 
the meaning aimed for (Marton & Tsui, 2004). So as a 
pedagogic approach, a pattern of variation is a useful tool 
for structuring teaching to make the learning of the object 
of learning possible. Marton (2009) proposed four kinds of 
awareness brought about by different patterns of variation; 
these are discussed in more detail below.

Contrast (C)
Marton (2009) describes the awareness brought about by 
experiencing the difference (variation) between two values 
as contrast. An observation made by Ling (2012) was that 
teachers had a tendency to place much emphasis on the 
use of examples to show similarities. However, according 
to variation theory, relying solely on similarities is not 
sufficient. Contrast therefore pre-supposes that to know 
what something is you have to know what it is not, that 
is, to discern or learn whether something satisfies a certain 
condition or not (Leung, 2012). For example, when teaching 
learners what a triangle is, the teacher should also show 
learners what a triangle is not by comparing it with other 
polygons (e.g. quadrilaterals, pentagons, hexagons and 
circles). 

Separation (S)
Let us take the same example of polygons and assume that 
the triangle that is initially encountered when the teacher 
contrasts it with other polygons (non-examples) is a scalene 
triangle. Because the learner has only encountered a scalene 
triangle they cannot yet distinguish this particular triangle 
(scalene) from other triangles. Separation is premised on 
the view that everything has a multitude of features, each of 
which gives rise to a different understanding of that thing. 
Similarly, a scalene triangle has a multitude of features some 
of which (e.g. shape) just help us to understand it as different 
from other polygons. If we want others to see a scalene triangle 
not just as a triangle but in a particular way that distinguishes 
it from other triangles, then we must focus on certain features 
that are critical to a certain way of seeing it, known as its 
‘critical features’ (Ling, 2012). In this sense learning is seen as 
a function of how learners’ attention is selectively drawn to 
the critical aspects of the object of learning. The view is that 
deliberate attempts to systematically vary certain aspects 
and keep certain aspects constant may help people to discern 
‘new’ aspects of an object and construct ‘new’ meanings that 
might not have been apparent before. Hence, according to 
Leung (2012), separation is an awareness awakened by a 
systematic ‘refined contrast’ obtained by purposely varying 
or not varying certain aspects in an attempt to differentiate 
the invariant parts from the whole (p. 435). So when the 
learner suddenly becomes aware of the scalene triangle 
through a systematically and deliberately focused variation 
pattern, we say the scalene triangle is separated from other 
triangles, and it now has a separate identity. If we do not 
vary the kind of triangles, we have not helped learners to 
separate scalene triangles from triangles in general. 

Generalisation (G)
Both Leung (2012) and Chik and Marton (2012) posit that 
generalisation is a verification and conjecture-making activity 
checking the general validity of a separated out pattern, 
which is often a goal of mathematics exploration. Ling (2012) 
points to links between separation and generalisation in 
that a pattern of variation can lead to either a separation or 
generalisation depending on the focus of variation or object 
of learning. According to Ling, in deciding whether the 
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pattern of variation leads to separation or generalisation, we 
must make clear what the object of learning is. In general, 
when the focus is on what is subordinate, it is separation: it 
separates the specific or particular from the general. When 
the focus is on what is superordinate, the awareness is of 
generalisation: it can be said about or is applicable to all. 

Fusion (F)
Fusion takes place when the learner’s attention is focused 
on several aspects of an object, a concept or a phenomenon 
that vary at the same time. The view from a variation theory 
perspective is that if the learners can only discern individual 
critical features but fail to achieve the stage of fusion (the 
simultaneous discernment of all of the critical features and 
the relationships amongst them), then they may not be able 
to understand the object of learning thoroughly, and will 
not be able to apply such knowledge to solve new problems 
(Ling, 2012). Fusion therefore integrates critical features or 
dimensions of variation into a whole under simultaneous 
co-variation. It is important to note that besides synchronic 
simultaneity when learners focus on different aspects of an 
object of learning at the same time, diachronic simultaneity 
also plays a critical role in fusion by connecting variation 
experiences gained in previous and present interactions 
(Leung, 2012). This follows the view that learners always 
bring what they have met before (previous knowledge) to 
bear on what they are learning now; hence, simultaneous co-
variation can be explained in terms of both synchronic and 
diachronic simultaneity. 

Discernment unit as the analytical 
framework
Leung (2012) proposed an idea of a discernment unit that 
stands for a unit of a pedagogical process driven by the 
four kinds of awareness (C, S, G and F) brought about in a 
variation interaction. According to Leung, in a pedagogical 
situation, these four types of variation interaction act together 
in a concerted way to bring about discernment, as shown in 
Figure 1. 

According to Leung (2012), the circular arrows and the dotted 
rectangle indicate that a mutually enhancing interaction 
between contrast and generalisation is at work to bring about 
awareness of dimensions of variation or critical features. 
Leung posits that the process of mathematical understanding 
is sequenced by a chain of such variation interactions in 
which simultaneity and focus of attention play critical roles 
(Figure 2). 

Each of the discernment units in Figure 2 represents a 
developing mathematical concept that is fused together by a 
process of contrast and generalisation driven by separation, 
as shown in Figure 3. 

This pedagogical model (Figure 3) shows how a lesson 
or series of lessons consists of a sequence of variation 
interactions that increases in sophisticated levels of contrast, 
reflecting the evolution of an idea from primitive stage to a 
more formal mathematical stage. 

Methodology
The analysis focused on discernment units as described by 
Leung (2012). These units were selected from five lesson 
transcripts of a Grade 11 teacher who was teaching number 
sequences. The demarcation of a discernment unit combined 
ideas from Leung, who posits that it is like a function of 
what is being varied, and Andrews’s (2009) idea of a lesson 
episode, which he defined as that part of a lesson where 
the teacher’s didactic intent remained constant. The tables 
summarising each discernment unit were modified from 
Tong’s (2012) study, which used similar summaries of 
lessons on reading. In Tong’s study it was possible to use one 
table to summarise each of the different variation patterns. 
Because of the nature of mathematics, Leung’s proposition 
was that in a pedagogical situation, the four types of 
variation interaction act together in a concerted way to bring 
about discernment. Consistent with this view, separation of 
each variation pattern would not have been productive in 
this article; hence, I modified the approach and combined 
summaries of the four variation patterns in one discernment 
unit. So within these discernment units, I looked at which 
aspects were fixed, what was varied and how it was varied, 
and what was thus available for discernment by the learners. 
Because discernment is about how learners responded to the 
teacher’s variation activities, learner responses were critical 
as evidence of discernment in this analysis; hence, they are 
labelled as Learner 1 or Chorus 1 for easier reference in the 
discussion. 

Source: Leung, A. (2012). Variation and mathematics pedagogy. In J. Dindyal, L.P. Cheng, & 
S.F. Ng (Eds.), Proceedings of the 35th Annual Conference of the Mathematics Education 
Research Group of Australasia (pp. 433–440). Singapore: MERGA. Available from http://
www.merga.net.au/documents/Leung_2012_MERGA_35.pdf

FIGURE 1: A discernment unit driven by types of variation interaction.

F, fusion; C, contrast; S, separation; G, generalisation.
Source: Leung, A. (2012). Variation and mathematics pedagogy. In J. Dindyal, L.P. Cheng, & 
S.F. Ng (Eds.), Proceedings of the 35th Annual Conference of the Mathematics Education 
Research Group of Australasia (pp. 433–440). Singapore: MERGA. Available from http://
www.merga.net.au/documents/Leung_2012_MERGA_35.pdf

FIGURE 3: A model of mathematics pedagogy based on variation.
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FIGURE 2: A pedagogical time sequence on the understanding of a mathematical 
object of learning.
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Data presentation and analysis
Discernment unit 1 
At this stage of the lesson the teacher had just worked 
through the logic behind the general term for all linear 
number sequences, which shows that to get any term an 
we start from the starting point a1 then add or subtract the 
constant difference repeatedly (n ± 1) times. This had been 
summarised on the board as an = a1 + (n ± 1)d. From this 
general rule an explicit rule for a specific linear sequence 
could then be deduced. The lesson then progressed thus:

Teacher:	 Suppose we are required to find the explicit rule for: 
[teacher writes three sequences on the board] 

                     (a) 4; 7; 10; 13; … (b) 2; 5; 8; 11; … (c) -10; -7; -4; -1; … 
Chorus 1:	 We are still working sir. 
Teacher:	 [After a pause] Ok, ok, anybody who got it, the 

explicit rule [three learners are called to work a, b, and c 
on board].

Learner 1:	 (a) Tn = 3n + 1
Learner 2:	 (b) Tn = 3n – 1
Learner 3:	 (c) Tn = 3n – 13 
Teacher: 	 Alright, ok, ok, ok, ok. I want us to observe a pattern 

here. What have you observed as the constant 
difference in each of the sequences that I have given 
you? 

Chorus 2:	 Its 3.
Teacher:	 Ok, between any two consecutive numbers there is 

a difference of 3. What have you observed about the 
explicit rule in each of the three cases?

Learner 4:	 The three rules all start with 3n then blablabla.
Teacher:	 Ok, so if you were given the sequences 
                     (d) 3; 5; 7; 9; … and (e) -4; -2; 0; 2; … 
                  and asked to find the explicit rule, what would you 
                     say?
Chorus 3:	 Tn = 2n then blablabla for both of them.
Teacher:	 Ooooh yes! Interesting, isn’t it? Anybody with 

questions so far?

Comment: Let us recall that contrast is an awareness brought 
about by experiencing difference. In this discernment unit one 
can see an awareness that was brought about by a contrast 
(C) variation in that the teacher provided two different sets 
of sequences {a; b; c} and {d; e} to enable learners to discern 
that a linear sequence with a common difference of 3 is not 
the same as that with a common difference of 2. Once this 
distinction was made by the learners, one can see a ‘refined 
contrast’ or separation (S) as the teacher selectively draws 
learners’ attention to the sameness of the set of sequences {a; 
b; c}. Through systematically varying the sequences and not 
varying the constant difference of 3 learners were enabled to 
separate the constant difference of 3 as a critical factor that 
identifies a linear sequence of the form Tn = 3n + c. Similarly, 
within the sameness of the set of sequences {d; e}, the learners 
could also separate and discern the constant difference 2 as 
a critical factor that identifies a linear sequence of the form 
Tn = 2n + c. 

Let us recall that generalisation is a verification and 
conjecture-making activity enabling learners to check the 
general validity of a separated out pattern. In this case after 
observing the links between the common difference and 
mx value of the explicit rule, learners were then enabled 
to generalise (G) that Tn = 3n + blablabla for the first set of 
sequences {a; b; c} and that Tn = 2n + blablabla for the set 
{d; e}. In terms of fusion, which is brought about through co-
variation, it is important to recall that this kind of awareness 
(fusion) can result from either a synchronic simultaneity or a 
diachronic simultaneity. In this discernment unit we see more 
of the latter in that by varying the sequences with a common 
difference of 3 first and then later varying those with a 
common difference of 2 the teacher opened up opportunities 
for learners to integrate (hence fusion, F) through diachronic 
simultaneity. This enabled them to make the links between 
the common difference and the mx value of the explicit rules 
for all linear sequences.

Discernment unit 2 
At the end of discernment unit 1, the teacher asked if learners 
had any questions: 

Learner 5:   Can I please ask a question? The thing nee; you 
                    see I just want to find out why isn’t that you guys 
          to find the general term why can’t you write 
                       Tn = blablabla + 3 [constant difference]? Why do you 

have -1 instead? That is my question. 
Teacher:	 Ok, ok alright I see what you mean. Let’s use the 

following examples and see what is happening.
	 [Writes on the board] 
                        (f) 4; 7; 10; 13 … (g) 1; 4; 7; 10; 13 ... (h) 7; 10; 13; … 
Teacher:	 I now want you to work out the explicit formula 

for these three sequences.
Learner 6:	 (f) Tn = 3n + 1
Learner 7:	 (g) Tn = 3n – 2
Learner 8:	 (h)Tn = 3n + 4 
Teacher:	 Ok, let’s observe something here. If you look 

carefully you will notice that I have been playing 
around with the same figures to generate three 
different sequences. What is it that I have not 
changed?

Chorus 4:	 The common difference is the same its 3 sir in all 
the three cases.

Teacher:	 Ok, and we have agreed that when this common 
difference is 3 then the explicit rule will be 

                            Tn = 3n + blablabla. So what is it that I have changed? 
Learner 9:	 I think you have just changed the starting point for 

each of those sequences.
Teacher:	 Ok, and what do we observe in the second part of 

our explicit rules?
Chorus 5:	 The second part is different each time.
Teacher:	 This seems to suggest some link of some sort 

between this starting point and the plus blablabla 
of this explicit formula. Who would like to try 

TABLE 1: Summary of discernment unit 1.
Varied Not varied Critical features to be discerned Evidence of learner discernment
Sequences a, b, c Common difference of 3 Link between common difference and the mx value in the explicit rule Learner 4: The three rules all start with 3n then 

blablabla.

Sequences d, e Common difference of 2 Chorus 3: Tn = 2n then blablabla for both.
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and explain this relationship to us? [Pointing to a 
learner]: Can you come to the board and use these 
two examples (3; 7; 11; 15 … and 3; 5; 7; 9 …) to 
explain what you have seen.

Learner 10: 	 [Explaining how to get the second part -1 of the explicit 
rule Tn = 4n – 1 for the sequence 3; 7; 11; 15 …] In 
this sequence, 3 (first term) minus 4 (common 
difference) gives us -1. Even here [pointing Tn = 2n + 1 
for the sequence 3; 5; 7; 9 …] the 3 (first term) minus 
2 (common difference) gives us 1.It always works.

Chorus 6:	 Hoooo [and clapping their hands]. 
Teacher:	 Ok, someone has made an observation here to say 

alright, this 2 [pointing to the 2 in Tn = 2n + 1] where 
is it coming from, it is the difference between any 
successive terms. Then to get this 1 he simply says 
3 [a1] minus 2 [common difference] which gives us 
1. Ok does it always work? Ok let’s see if it works 
here. [Pointing to 1; 4; 7; 10 …] So according to him 
the explicit rule here should be Tn = 3n – 2?

Chorus 7:	 Agreed! Yes! Yes! True! [Learners go on to prove the 
rule by generating 1; 4; 7; 10 …]

Comment: In this discernment unit, one can see why Leung 
(2012) posited that variation interaction can be teacher 
designed or learner initiated and that it should not always 
be assumed that learners will always understand an object 
of learning in the same way as the teacher intended. For 
example, Learner 5 asked why the idea of constantly adding 
on the common difference was not coming out in the explicit 
rule. According to Ling (2012) this is mainly because the two 
possible ways of seeing the same thing had not been placed 
in the foreground and so variation was not effective in 
bringing out the contrast between the ‘add on’ of the common 
difference in the recursive and the (+ c) in the explicit rule. 
Literature confirms that learners usually see linear sequences 
through recursion (Blanton, 2008). This therefore suggested 
that this (+ blablabla) part of the explicit rule was a critical 
feature that the teacher needed to make the object of variation. 
The teacher through ‘refined contrast’ variation then steered 
the learners’ awareness and hence opened up opportunities 
for learners to separate (S) the critical links and discern that 
the second part (+ c) of the explicit rule was equivalent to 
term one minus the common difference i.e. (a1 – d). Because 
Learner 5 and perhaps others had now gained a new way 
of seeing this part of the explicit rule it can be argued that a 
contrast variation was experienced. According to Ling (2012, 
p. 86), contrast (C) can also be brought about when learners 
experience variation between their prior knowledge and the 
new way of seeing the same thing, as intended by the teacher. 

When the teacher probed: ‘Does it always work?’, one can see 
how the teacher is using generalisation (G) as a verification 
and conjecture-making activity in which learners check 
the general validity of their separated out pattern (Chik & 
Marton, 2012). In this discernment unit one can see fusion 
(F) as the learners’ attention is focused on several aspects 
of the explicit rule under both synchronic and diachronic 
simultaneity. 

Discernment unit 3
After the discussion on the connections between the recursive 
rule and the explicit rule the teacher then posed another 
question:

Teacher: 	 Let us go back to the three examples that we started 
off with. In each case I want us to determine the 
10th term using any of the rules that we have seen 
so far [three learners provide answers for sequences a, b, 
and c].

Learner 11: 	 (a) 31 	
Learner 12:	 (b) 29 	
Learner 13:	 (c) 17
Teacher:	 Which of the two rules recursive or explicit did you 

use?
Chorus 8:	 Explicit sir, it’s much easier and faster.
Teacher:	 Ok, let us explore this issue further. Is there any 

other way that we could have calculated or located 
the 10th or any other term in these sequences?

Learner 14:	 Sir, I think we could also use graphs to find the 
answers.

Chorus 9:	 Aaaaaah! How can you draw graphs here? 
Teacher:	 Can somebody explain how?
Learner 15:	 Instead of writing Tn = 3n + 1 sir we could write 

y = 3x + 1 where y = Tn and x = n then we can make 
a table of values connecting the term numbers (x) 
and their values (y) then plot the values on the x 
and y plane [Cartesian].

Chorus 10:	 Hoooo [whilst clapping their hands. The class then 
makes the following table of values for the sequence: 
y = 3x + 1]:

Teacher:	 I hope you are making sense of what is happening 
here. Because we have now run out of time, I want 
us to go home and try to make tables first then 
draw the graphs of the same tasks (a), (b) and (c) 
then we will discuss your findings tomorrow.

TABLE 2: Summary of discernment unit 2.
Varied Not varied Critical features to be discerned Evidence of learner discernment 
The starting points of 
sequences f, g, h

Common difference of 3 Link between starting point of a number 
sequence and the second (+ c) part of the 
explicit rule

Chorus 5: The second part is different each time. 

Learner 10 explaining how to get the -1 and +1 of the explicit rules i.e. (a1 – d).

Chorus 6 & Chorus 7: The class agrees and learners go on to prove the rule.

TABLE 3: Summary of discernment unit 3.
Varied Not varied Critical features to be discerned Evidence of learner discernment 
The process or 
representations from 
numerical, recursive and 
explicit to table form 

The sequences a, b, c The different ways in which linear 
sequences could be represented 

Learner 15: Instead of writing Tn = 3n + 1 we could write y = 3x + 1 [making 
links between representations].

The advantages and disadvantages of each 
representation

Chorus 8: Explicit sir,  it’s much easier and faster.

x 1 2 3 4 5

y 4 7 10 13 16
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Comment: Within this discernment unit one can see how 
the teacher has contrasted (C) the different representations 
of linear sequences starting with the recursive rule, through 
the explicit rule, through tables for the corresponding values 
of x and y. Let us recall that contrast can also be brought 
about when learners experience variation between their 
prior knowledge and the new way of seeing the same thing, 
as intended by the teacher. We notice this when the learners 
suddenly realised that Tn = 3n + 1 could be written as y = 3x + 1, 
which they were familiar with. 

In this discernment unit the teacher also makes deliberate 
attempts to systematically draw learners’ attention to the 
critical features of each representation, thereby helping the 
learners to separate (S) and hence discern certain advantages 
and disadvantages of working with each representation. For 
example, the recursive rule shows both the starting point and 
the constant difference of the linear sequence clearly, which 
the explicit rule does not. However, the explicit rule has an 
advantage in that it enables one to get straight to any term 
value without having to go via the previous term, which is 
the limitation of the recursive rule. This is evidenced in the 
learners’ responses when they were asked to determine the 
tenth term of each of the sequences. Their responses (Chorus 8) 
showed that it was easier for them to use the explicit rule to 
get the tenth value. Probing the learners for another method 
that could be used to determine the tenth term enabled the 
learners to again discern the links between the explicit rule, 
Tn = 3n + 1, and y = 3x + 1 (its equivalent form when written 
in terms of x and y), which they were more familiar with. This 
was critical in that this formed the foundation for learners to 
generalise (G) why such number sequences are called linear. 
The table then gives a visual connection between the term 
number (input) and its value (output) in a way that makes 
it easier for learners to identify how terms change from 
one to the next. This visual link between the input and the 
output might not have been discerned by the learners if the 
teacher had not contrasted the recursive and the explicit rules 
simultaneously (fusion, F). 

Discernment unit 4 
The following day learners brought their work on graphs. 
The teacher had drawn the graphs on an A0 size of paper 
and pinned it on the board for the classroom discussion 
(see Figure 4): 

Teacher:	 Ok, let us proceed from where we left. What can 
you say about the graphs that you drew?

Chorus 11:	 They are all straight line graphs. They are parallel 
lines. They are increasing graphs. 

Teacher:	 Ok, good observations. With many sequences it may 
be easy to notice how terms change from one to the 
next if the terms are listed numerically. However, 
listing the terms does not show other characteristics. 
For example, when a pattern in a number sequence 
is found by adding or subtracting the same number 
every time then the sequence is called an arithmetic 
or linear sequence because as you can see from the 
graphs all arithmetic sequences make straight line 
graphs – something which we could not have seen 
from listing the numbers. But why are the lines 
parallel?

Chorus 12:	 Sir, just by looking at them we can see that they are 
parallel. 

Teacher:	 Yes I agree, but how else can we tell they are 
parallel? 

Learner 16:	 These lines, sir, have the same gradient.
Teacher:	 Ok, somebody has made an observation that these 

lines have the same gradient. Ok, do you agree? If 
so how do you determine that gradient? [There is 
some discussion with some learners pointing to the 3x or 
3n in the explicit rule, others were counting the blocks to

                       determine the       , i.e. the change in y over the change in

                       x. Eventually the class reaches a consensus]
Chorus 13:	 The gradient is the same as the common difference 

when the terms are listed numerically. 
Teacher:	 Now let us come back to the question raised 

earlier that why do we have -1 in the explicit rule 
instead of the constant difference. In the recursive 
rule the common difference is added on to the 
previous term each time so it is visible every time 
we calculate a term value. In the explicit rule this 
common difference is considered as the rate of 
change, i.e. as we move from t1 to t2 and so on, 
the numbers increase by 3. Hence if we wrote the 
arithmetic sequence in the standard function form 
y = mx + b, it is the m value which is equal to 3 and 
not the b. So the b is not standing for the common 
difference hence we cannot say Tn = blablabla + 3 
as you suggested (pointing to the learner who had 
asked earlier). Who can tell us what the b is standing 
for in this case? 

Learner 17:	 Sir, it is standing for the point where the graph cuts 
the y-axis.

Teacher:	 What other term do we use for that?
Learner 18:	 The y-intercept,  sir.
Teacher:	 How is this linked with the starting point of each 

sequence? Remember in the recursive rule we have 
said we always start at a1. Can you locate the three 
starting points for the three graphs that you have 
drawn?

Chorus 14:	 [The learners locate the points A, B and C as the starting 
points] 

Teacher: 	 Can you see that in each case to move from each 
starting point (A, B and C) to the point where the 
graph cuts the y-axis we have to move 1 step back 
along the x-axis. It’s like getting to a point we can 
call a0. Let us remember that each time we move 

same number every time then the sequence is called an arithmetic or linear 
sequence because as you can see from the graphs all arithmetic sequences 
make straight line graphs – something which we could not have seen from 
listing the numbers. But why are the lines parallel? 

Chorus 12:  Sir, just by looking at them we can see that they are parallel.  
Teacher:  Yes I agree, but how else can we tell they are parallel?  
Learner 16:  These lines sir have the same gradient. 
Teacher: Ok somebody has made an observation that these lines have the same 

gradient. Ok do you agree? If so how do you determine that gradient? [There is 
some discussion with some learners pointing to the 3x or 3n in the explicit rule, others 

were counting the blocks to determine the 
dx
dy

, i.e. the change in y over the change in 

x. Eventually the class reaches a consensus] 
Chorus 13: The gradient is the same as the common difference when the terms are listed 

numerically.  
Teacher: Now let us come back to the question raised earlier that why do we have –1 in 

the explicit rule instead of the constant difference. In the recursive rule the 
common difference is added on to the previous term each time so it is visible 
every time we calculate a term value. In the explicit rule this common 
difference is considered as the rate of change, i.e. as we move from t1 to t2 and 
so on, the numbers increase by 3. Hence if we wrote the arithmetic sequence in 
the standard function form y = mx + b, it is the m value which is equal to 3 and 
not the b. So the b is not standing for the common difference hence we cannot 
say Tn = blablabla + 3 as you suggested (pointing to the learner who had asked 
earlier). Who can tell us what the b is standing for in this case?  

Learner 17:  Sir it is standing for the point where the graph cuts the y-axis. 
Teacher:  What other term do we use for that? 
Learner 18:  The y-intercept sir. 
Teacher: How is this linked with the starting point of each sequence? Remember in the 

recursive rule we have said we always start at a1. Can you locate the three 
starting points for the three graphs that you have drawn? 

Chorus 14:  [The learners locate the points A, B and C as the starting points]  
Teacher:  Can you see that in each case to move from each starting point (A, C and E) to 

the point where the graph cuts the y-axis we have to move 1 step back along 
the x-axis. It’s like getting to a point we can call a0. Let us remember that each 
time we move 1 step on the x-axis we actually go up or down 3 steps (common 
difference) along the y-axis. This is the reason why in the standard form y = mx 
+ b; the b value or a0 can always be found by a1 (starting point) minus d 
(common difference). Simply put when given the starting point in a linear 
sequence move backwards by the common difference and you have the b-
value of the explicit formula. That is exactly why (learner’s name) method 
always worked. 

 
<Insert Table 4 here> 
  

Comment: From this discernment unit one can see contrast (C) in the learners’ changed way of 
seeing different representations of a linear sequence. One can also see separation (S) in the manner 

FIGURE 4: Graphs of the three arithmetic sequences.
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one step on the x-axis we actually go up or down 
three steps (common difference) along the y-axis. 
This is the reason why in the standard form y = mx + b; 
the b value or a0 can always be found by a1 (starting 
point) minus d (common difference). Simply put 
when given the starting point in a linear sequence 
move backwards by the common difference and 
you have the b-value of the explicit formula. That 
is exactly why (learner’s name) method always 
worked.

Comment: From this discernment unit one can see contrast 
(C) in the learners’ changed way of seeing different 
representations of a linear sequence. One can also see 
separation (S) in the manner in which learners were enabled 
to discern the links between critical features of a linear 
sequence when represented in a different way. From the 
teacher’s discussion, one can observe that by representing all 
three sequences on one graph, a fusion (F) is foregrounded 
and a number of mathematical connections are triggered. So 
in this discernment unit through the teacher’s varying and 
not varying, learners were enabled to discern and generalise 
(G) that all the sequences they had worked with so far could 
be represented graphically by straight lines that are parallel 
(same gradient), that are all ‘increasing’ (gradient is positive 
in all the three cases), and whose slope m is exactly the same 
as the common difference, d. It was also possible for learners 
to discern that the graphical representation, especially when 
all the sequences had been drawn on the same Cartesian 
plane, became more like a ready reckoner: it allowed quick 
interpolation of values. Knowing one of the two values (x or y) 
allowed learners to interpolate the other value by following 
across (or up) to one axis and then down (or across) the other 
axis to read the unknown data that lies within the known data 
range but was not measured initially or given in the initial 
listing of terms. For example, just by moving up the vertical 
line (x = 1), they were able to read off (Chorus 14) the starting 
points (y values at A, B and C) for each of the sequences 
that had been represented on this graph. By moving up the 
vertical line x = 10, they were also able to read off the tenth 
values of the different sequences without much effort. In fact 
it can be argued that the way tasks were structured through 
variation opened up space for deep mathematical reasoning 
that would have enhanced learners’ higher order thinking 
skills and understanding of number patterns. Consistent 
with Leung’s model as shown in Figure 3, one can see how 
number patterns were presented from the primitive listing 
of terms to the more formal and precise way through the use 
of recursive, explicit and graphical representations. It can 
therefore be argued that these forms of variation (contrast, 
separation, generalisation and fusion) provided a hierarchical 

system of experiencing processes through forming concepts 
(Gu, Huang & Marton, 2004). Watson and Mason (2006) 
concluded that such results created by learners become tools 
for more sophisticated mathematics, and are a significant 
component of their mathematical progress. 

Ethical considerations 
The Department of Education granted approval to proceed 
with this study under permit T-728 P01/02 U-848. At the 
institutional level, the university ethics committee granted 
approval under protocol 2007EC007. At the school level, 
the researcher received informed consent from teachers and 
parents of the learners who participated in the study. 

Summary
This article was triggered by the paradoxical observation that 
a Grade 11 teacher taught number sequences in a manner 
that would have been described generally as teacher led, 
content focused and transmission based, yet the instructional 
activities seemed to create opportunities for learners to 
make deep mathematical connections. Despite the fact that 
this approach might have been described pejoratively as 
inhibitive to learners’ deep understanding, the researcher 
hypothesised that something could be learnt from this 
teacher’s instructional practices. Borrowing Leung’s (2012) 
framework of a discernment unit based on the theory of 
variation, the analysis was aimed at examining the extent to 
which learners were provided with opportunities to develop 
mathematical concepts. Although the results are exemplified 
through four discernment units, all the five lessons on 
number patterns that were observed for this teacher showed 
that indeed all the characteristics of a strategic use of variation 
were at the centre of the teacher’s instructional activities. 
The discussion and illustrations thereof highlight how 
opportunities were created for learners to discern a number 
of important mathematical ideas. Starting from a primitive 
interpretation of a linear sequence through recursion, that 
is, an = a1 + (n ± 1)d, one can notice how the learners moved 
to more sophisticated stages through establishing the links 
between the common difference and the coefficient of n in 
the explicit rule, the links between the first term and common 
difference to determine the b value of the explicit rule, and 
then eventually justifying and linking these relationships 
with gradients and y-intercepts on graphs of the same 
sequences. This way it can be argued that learners were 
forming a hierarchy of gradually refined concepts of number 
patterns through the teacher’s approach of varying and not 
varying certain things. 

TABLE 4: Summary of discernment unit 4.
Varied Not varied Critical features to be discerned Evidence of learner  discernment 
From a numerical representation to a graphical 
representation of a linear number sequence 

The sequences a, b, c Why such sequences are referred to as linear Chorus 11: They are all straight lines, sir.

Links between constant difference and the gradient Chorus 13: Gradient is the same as the 
common difference.
Chorus 11: They are parallel.

Links between the  (a1 − d) and the y-intercept Learner 17 & Learner 18: The y-intercept, sir.
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It can be concluded that the ways in which strategies of 
variation are orchestrated in a class can foster meaningful 
learning. The four discernment units as outlined fully 
illustrate this point. These lessons were generally teacher 
led; there was nothing ‘novel’ about the tasks, they were just 
standard textbook tasks, but the manner in which the teacher 
varied the activities and kept some constant indeed created 
opportunities for learners to discern a number of important 
mathematical ideas. 

Implications for theory and classroom practice
In terms of contributing to theory, the warning inherent 
in many theoretical analyses is that if we focus on the 
insights on teaching and learning rather than arguing about 
the differences between the theories at the philosophical 
level, then we will indeed find that many of the teaching 
approaches, strategies and designs suggested are similar and 
compatible (Ling, 2012). Through the activities within the 
four discernment units one can see how a pedagogy based on 
variation provides such a harmonising framework in which a 
predominantly teacher-led teaching approach supports deep 
understanding of mathematical concepts. 

In terms of contributing to curriculum development, this 
article contributes to harmonising the simplistic and bogus 
dichotomies that have been set up in the curriculum, which 
need to be addressed in future policy documents. The South 
African curriculum statements create uncalled-for polarity 
between the ‘old’ and the ‘new’ curriculum, but what is not 
acknowledged is that the ‘new’ is not often seen, even in 
well-resourced countries where school reform movements 
have been promoting these ideas for many years. 

With regard to teacher education, both literature and 
empirical evidence suggest that teacher educators have a 
legal, professional, moral and civic obligation to provide 
their student teachers with models of teaching that work in 
their contexts. From that perspective, it can be argued that 
this article could be of benefit to teacher education in that 
it explores a model of teaching mathematics that has been 
tried and tested elsewhere and locally and which might be 
considered for further trials with student teachers. 

In terms of classroom practice, Vithal and Volmink (2005) 
posit that waves of curriculum change often result in the 
implementation of an eclectic mixture of approaches. The 
‘new’ curriculum demands a radical shift from the traditional 
teacher-led approaches that teachers are familiar with, yet it 
does not provide a model of what it might mean to teach for 
conceptual understanding. Teaching with variation could 
provide teachers with this much-needed bridge between 
the ‘old’ that they are familiar with and the ‘new’ that is 
espoused. This is important for educators as they struggle to 
make sense of the seemingly contradictory requirements of 
the ‘new’ curriculum.
 
With reference to how learners could benefit from such 
studies, empirical evidence shows that lack of insight into the 
pedagogical theories underpinning the reform movement 
may cause confusion even amongst experienced teachers, 

which leads to learners having neither conceptual nor 
procedural knowledge (Schollar, 2004). The implication for 
schools and educators seems clear: mathematics education 
programmes in schools should incorporate both teacher-led 
and learner-centred approaches in their instruction practices. 
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