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There is increasing acknowledgement that teachers’ knowledge for teaching mathematics is 
multifaceted and topic specific. Given the paucity of research on the teaching and learning of 
financial mathematics in general, little can be known about teachers’ knowledge for teaching 
compound interest. However, since financial mathematics is a component of the school 
curriculum in South Africa, and an important element of financial literacy more broadly, 
attention needs to be given to knowledge for teaching financial mathematics, and compound 
interest in particular. Drawing from a larger study in which the author taught a financial 
mathematics course to pre-service secondary mathematics teachers, a theoretical elaboration 
is provided of the underlying mathematics of compound interest, and connections with the 
world of banking. Based on findings from the study, two key student errors are identified: the 
over-generalisation of linear thinking in multiplicative scenarios, and the over-generalisation 
of reversible operations in percentage-change scenarios. Taken together, teachers’ knowledge 
of relevant mathematics, of the banking context and of learners’ conceptions will contribute to 
building a knowledge-base for teachers’ knowledge for teaching compound interest. 

Introduction
The issue of teachers’ mathematical knowledge for teaching has been on the agenda in mathematics 
education research since Shulman’s seminal work in the eighties (Shulman, 1986, 1987). There is 
now agreement that teachers’ knowledge is both multifaceted and topic specific (Adler & Ball, 
2009). In areas of secondary mathematics that have been widely researched, such as introductory 
algebra, functions and calculus, there is a body of knowledge that elaborates the mathematical 
concepts at school level, that provides insights into learners’ conceptions in relation to the topics, 
and that proposes a range of topic-specific pedagogical approaches to support learning of the 
topic (e.g. Even, 1990, 1993; Thompson, 1994; Thompson & Thompson, 1996; Zandieh, 2000). 
However, there are many concepts and topics in the school curriculum that have received little 
attention. Financial mathematics is one of these. We know very little, for example, about learners’ 
conceptions of compound interest or about the most effective ways of teaching compound interest, 
and what we might claim to ‘know’ is largely anecdotal. 

Therefore, before considering what knowledge teachers need for teaching compound interest, 
it is necessary to consider more deeply the notion of compound interest in the context of school 
mathematics. In this article I provide a theoretical elaboration of compound interest against 
which to explore learners’ conceptions, teachers’ knowledge and appropriate pedagogies. I focus 
on mathematical and financial aspects of compound interest that are pertinent to teaching at 
secondary school level. 

This article is drawn from a larger study of pre-service secondary mathematics teachers learning 
financial mathematics in a course specifically designed for teachers (Pournara, 2013). The data 
drawn on in this article come from video records of contact sessions during the course and during 
small group tutorial sessions, as well as students’ written work from tutorials, journals and course 
assessments. 

Whilst Shulman proposed the distinction between subject matter knowledge (SMK) and pedagogical 
content knowledge (Shulman, 1986, 1987), this distinction is not so easy to operationalise (Ball, 
Thames & Phelps, 2008). And so following others in the field (e.g. Adler, 2005; Adler & Davis, 
2006; Huillet, 2009) I refer to mathematics for teaching as an amalgam of subject matter knowledge 
and pedagogical content knowledge, which consists of aspects of knowledge that are mainly 
mathematical and others that are mainly pedagogical. In addition, given my focus on financial 
mathematics, I add knowledge of financial aspects. 

In order to provide a backdrop for the article, I begin by locating compound interest in the South 
African school mathematics curriculum and use examples from local textbooks to illustrate typical 
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tasks. I also briefly summarise the small body of research 
findings on learning of compound interest. Thereafter I focus 
in turn on mathematical, financial and pedagogical aspects of 
teachers’ knowledge in relation to compound interest. 

Compound interest in the South 
African school curriculum
The notion of interest on money is introduced in the South 
African Mathematics1 curriculum in Grade 7 (Department of 
Education, 2002), starting with simple interest, followed in 
later grades by compound interest with annual compounding, 
and then multiple compounding periods per year. In 
Grade 11 the notions of nominal and effective interest rates 
are introduced, together with problems involving changes in 
interest rates and depreciation. Here are three typical examples 
of textbook questions on compound interest: 

Question 1: Brett has R7500, which he wants to invest for 
5 years. Which savings plan will yield more 
interest: simple interest at 14% p.a. or compound 
interest at 12% p.a.? (Cross et al., 2005, p. 60)

Question 2: A sum of money was invested at a nominal annual 
interest rate of 4.25% per annum compounded 
quarterly. After five years this investment was 
worth R4500. 
•	 What sum of money was invested?
•	 Give the effective annual interest rate for this 

example. (Bennie, Blake & Fitton, 2006, p. 140)
Question 3: R28 000 is invested for 10 years. The interest is 

calculated at 9.3% p.a. compounded monthly for 
the first four years. After four years the interest 
rate is increased to 11.8% p.a. compounded 
quarterly. Calculate the value of the investment 
at the end of 10 years. (Laridon et al., 2006, p. 38)

Question 1 is typical in both local and international texts, and 
requires students2 to distinguish between calculating simple 
and compound interest. Students will either do the necessary 
iterative calculations for five years, or they will use the simple 
and compound interest formulae. It is assumed here that 
compounding is annual since it is not stated otherwise. By 
contrast, in the world of banking, compounding is assumed to 
be monthly unless specified otherwise. Question 2 is a typical 
Grade 11 question dealing with quarterly compounding, and 
with nominal and effective interest rates. It requires students 
to identify the rate per period and the associated number of 
compounding periods. Question 3 deals with a change in 
interest rates and in compounding periods. A key aspect here 
is the different rate per period for two time segments of the 
question. This question is typical of textbook questions that 
make use of timelines. 

From the perspective of the banking world, all three questions 
reflect very simplified scenarios. For example, it is assumed 

1.In this article I focus only on the secondary Mathematics curriculum although financial 
mathematics is also a component of the Mathematical Literacy curriculum. 

2.I refer to both students and learners in this article. In some instances the distinction 
is obvious, as in references to research with university students. In other cases the 
ambiguity is deliberate because I make the assumption that errors made by pre-service 
teachers are also likely to be made by learners in schools. 

that deposits remain in the bank for full periods and, by 
implication that they are made at the beginning of the period. 
No attention is given to the number of days in the year or the 
number of days in a month. In question 3 the big increase 
in interest rate and the shift from monthly to quarterly 
compounding are not likely in the banking world. 

It is important to note the curriculum constraints with 
regard to financial mathematics. Financial mathematics is 
allocated two weeks of teaching time, and 5% of the total 
marks in final assessments in Grades 10–12 (Department of 
Basic Education, 2011). Given these curriculum constraints, 
one needs to be realistic about how deeply teachers can 
deal with compound interest. One also needs to consider 
the typical questions that learners will encounter in their 
text books, and in assessments. All this constrains what it is 
possible to teach and learn in schools. This, in turn, frames 
the nature and extent of the teachers’ knowledge for teaching 
financial mathematics in schools. Whilst acknowledging the 
curriculum constraints, in this article I elaborate a range and 
depth of knowledge of compound interest that might enable 
teachers to teach the content with mathematical insight and 
increased awareness of the realities of the banking world. 
I do not propose that depth and breadth of knowledge is a 
requirement to teach compound interest well, but rather 
that it is a level to which teachers may aspire. 

Research on conceptions of 
compound interest
Whilst there is very little research on financial mathematics 
in general, the following findings can be gleaned from the 
limited research on students’ knowledge of compound 
interest and their ability to work with it. Whilst it is 
difficult to determine the extent to which the findings may 
be generalisable beyond the original studies, the findings 
all resonate with my experiences of students’ learning of 
compound interest:

•	 University students as well as the broader population 
have difficulty in executing compound interest calculations 
(Dempsey, 2003; Organisation for Economic Cooperation 
and Development, 2005).

•	 University students cannot easily distinguish the impact 
of simple interest from that of compound interest on the 
growth of a principal amount (Beal & Delpachitra, 2003).

•	 University students, including ‘business majors’, lack 
knowledge of the impact of increasing the frequency of 
compounding (Chen & Volpe, 1998).

•	 University students have difficulty in identifying which 
formula or procedure to use for time value calculations 
involving single amounts or multiple payments (Jalbert, 
Jalbert & Chan, 2004).

•	 High school learners may not convert the nominal annual 
rate to an appropriate rate per period, and may not easily 
distinguish whether a formula calculates the accumulated 
interest or the cumulative balance (Geiger & Goos, 1996). 

The workplace-based research by Hoyles and Noss and others 
(e.g. Hoyles, Noss, Kent & Bakker, 2010; Noss & Hoyles, 
1996a, 1996b) provides the greatest insight into the learning of 
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compound interest. They found that percentage, compound 
growth and graphs were pervasive in daily financial work, 
and that employees’ grasp of percentage and interest was 
deeply intertwined with their working contexts. However, 
they were not aware of the underpinning mathematics, 
such as the multiplicative structures connecting percentages 
and interest rates. Hoyles et al. (2010) also emphasised the 
importance of being able to communicate with the customer 
to explain printouts, to answer queries, and to provide 
meaningful explanations about the benefits of one product 
over another. There are similarities between the demands of 
this work and teaching since both require an ability to distil 
the essence of the issue and to communicate this to another 
who is less knowledgeable. 

One of the key insights from Bakker, Kent, Noss, Hoyles and 
Bhinder (2006) relates to interest and percentage increase or 
decrease, and is therefore relevant to school mathematics. 
Based on interventions with employees, they argue that 
an approach of multiplying factors is preferable to adding 
or subtracting percentages. For example, in the case of 
adding interest of 6% p.a. or calculating a discount of 25% 
on some amount, P, they suggest that learners (or students 
or employees) should be encouraged to work with the 
multiplicative forms of (1 0.06)P +  and 0.75 P×  rather than 

6
100P P+  or 25

100P P− × . The multiplicative form has several 
advantages, including its efficiency and its similarity to the 
compound interest formula. 

Mathematical aspects of teachers’ 
knowledge 
In this section I distinguish the key features of interest in 
general and of compound interest in particular. I discuss 
links between compound interest and related mathematical 
concepts, and I show that two different derivations of the 
compound interest formula require different conceptions by 
learners. Whilst mathematics is always in the foreground in 
this section, teaching issues are continually present, albeit in 
the background. 

I draw on Ma’s (1999) notions of depth and breadth with 
regard to teacher’s mathematical knowledge. For her, depth 
of understanding concerns the ability to connect a concept or 
a topic ‘with more conceptually powerful ideas of the subject’ 
(p. 121) so that the power of a mathematical idea is related to 
its proximity to the structure of the discipline. A mathematical 
idea that is closer to the structure of the discipline underpins 
more topics and hence has more ‘mathematical influence’ 
(my term) and thus mathematical power. By contrast, breadth 
of understanding is related to the ability to connect a concept 
or topic with concepts or topics of similar or less conceptual 
power. Inspired by Ma’s work and drawing loosely on her 
idea of knowledge packages for primary mathematics, I 
propose the hierarchies shown in Figure 1 and Figure 2. 
Concepts that are higher in the diagram build on those that 
are lower down. I use italics when referring to the nodes (text 
boxes) in the diagrams.

In network diagrams such as these it is often possible to argue 
that all components are linked in some way to each other, and 
thus to insert links between all nodes in the diagram. This is 
seldom productive because it obscures the key relationships 
in the mass of connecting lines. I have therefore chosen to 
represent only the key links between components. 

A hierarchy of interest concepts 
In Figure 1 I present a hierarchical network of links between 
key mathematical concepts in simple and compound growth. 
The central (purple) cluster indicates mathematical concepts, 
with percentage at the lowest level, and extends to progressions. 
Following Ma (1999), this arrangement reflects that, for 
example, linear growth is a mathematically more powerful 
concept than geometric progressions because it underpins a 
larger number of mathematical topics (although other topics 
that it underpins, such as rates of change, are not indicated 
here). The right (green) cluster and left (light blue) clusters 
indicate concepts dealing with increasing and decreasing 
growth respectively. 
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At the lowest level of the diagram, links are shown between 
percentage, percentage change and their application in financial 
contexts in the form of percentage points and basis points. 

Building on percentage, and based on the recommendations 
of Bakker et al. (2006), is the concept of growth factor. I use this 
term for the factor that is multiplied by the ‘starting value’, 
which could be the principal amount, original price, and so 
on. In the case of simple increase or decrease it is (1 )i n± ⋅  
and in the case of compound increase or decrease it is (1 )ni± . 
I shall use the term unit growth factor for (1 )i±  in both simple 
and compound increase and decrease. This term is not 
indicated in the diagram. 

Moving vertically, the diagram contains three horizontal 
clusters: linear growth, exponential growth and progressions, 
all of which build on growth factor. I place linear growth 
below exponential growth since constant additive change is a 
simpler concept than constant multiplicative change (Brown, 
Küchemann & Hodgen, 2010). At the top level, progressions 
builds on the relevant growth from the levels below. Moving 
horizontally within each cluster, linear growth is applied in 
the contexts of simple interest and straight line depreciation 
whilst exponential growth is applied in compound interest and 
reducing balance depreciation. Geometric progressions are applied 
in annuities.

The bold lines connecting growth factor to simple interest, 
compound interest and annuities indicate the importance of the 
notion of growth factor in calculations involving each of these 
concepts. The outer (dark blue) boxes on either side of the 
diagram indicate connections between the aspects of financial 
mathematics and other key mathematical concepts such as nth 
roots, logs and horizontal asymptotes. This reflects Ma’s (1999) 
notion of breadth. These mathematical concepts are necessary 
when dealing with various aspects of compound increase 
and decrease at school level. For example, logs are required 
when determining the length (or number of compounding 
periods) of an investment. The connection with e applies to 
continuous compounding. 

A network of concepts relating to growth factor
In Figure 2, I expand the growth factor component of Figure 1 
by focusing on the processes and concepts involved in 
calculating interest with particular reference to the school 
curriculum. I therefore refer to interest at the base of the 
network. I distinguish three main components: the calculation 
method, the interest rate and the compounding frequency. 
Each of these has several interrelated sub-components. 
Different colours (or shades of grey) have been used to 
distinguish the three main components, their sub-components 
and the links. As in Figure 1, I have represented only the key 
links between components. 

I begin with the calculation method: interest calculated on the 
principal amount is simple interest, whereas interest calculated 
on the latest balance is compound interest. Daily interest 
calculations, as done in banks, are simple interest calculations 
that produce the balance on which interest is compounded 

at the end of the month, hence the links to simple interest and 
compound interest. 

With regard to interest rate, the key distinction is between 
nominal rates and effective rates. In addition, the rate per period 
is an essential component and might even be considered the 
central idea in the entire network since it connects interest 
rate, compounding frequency and calculation method. I include 
the interest rate of an annuity for completeness since it is 
not required in the school curriculum (because it requires 
numerical methods). Consequently I have not inserted links 
to other sub-components such as rate per period and compound 
interest since this would complicate the diagram.

The compounding frequency determines the amount of interest 
that will accumulate. I distinguish annual compounding from 
multiple compoundings per year, and continuous compounding. 
Once again this is for completeness since continuous 
compounding is not part of the school curriculum. 

Nominal interest rate is connected to effective interest rate (by 
means of a broken line) since the two notions are dependent 
on each other. Nominal rate is linked to annual compounding, 
rate per period and simple interest because it is the rate used in 
the respective procedures. It is also linked to rate per period 
since it is one of the inputs that determine the rate per period. 

Rate per period also has links from compound interest and 
multiple compoundings per year. The nominal rate, together with 
number of compounding periods, determines the interest 
rate for the smaller periods. The link from compound interest 
indicates the need to determine a rate per period when there 
are multiple compoundings per year. There is also has a link 
to effective interest rate since the rate per period is used in 
calculating the effective rate. 

Effective interest rate has links from compound interest, 
multiple compounding periods, nominal rate and rate per period. 
These sub-components work together to produce ‘interest 
on interest’ and the effective rate is the annual interest 
rate, compounded once, that generates the same yield as 
interest on interest. Effective rate also has a link from annual 
compounding and simple interest. The annual compounding 
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link exists because the most important effective rate is the 
annual effective rate which assumes annual compounding. 
The simple interest link is important because it supports an 
explanation of the effective rate in the following manner: if 
accumulated interest is removed from the account after each 
interest period, the balance returns to the principal amount. 
This becomes a simple interest situation because interest is 
calculated on the principal amount each time. By contrast, if 
the interest remains in the account, then applying the same 
rate per period and appropriate compounding frequency will 
produce a higher yield. This yield, expressed as a percentage 
of the principal, is the effective annual rate. Since effective 
rate can be seen as percentage increase, the link to percentage 
change in Figure 1 has been included. 

Continuous compounding has links from compound interest and 
rate per period. It assumes the number of compoundings per 
year tends to infinity, thus reaching the limiting situation which 
can be shown to equal Peit where P = principal, i = nominal 
annual rate, and t = time in years. 

It is possible to make a link between rate per period and simple 
interest. This would be relevant if simple interest is determined 
more frequently than annually. A hypothetical example is a 
notice deposit where interest is paid out quarterly and thus a 
quarterly rate would be used to determine the accumulated 
interest per quarter. 

Based on my teaching of financial mathematics to pre-service 
teachers, and conversations with teachers in schools, it 
appears that the notion of rate per period may be a key element 
of learning compound interest. It brings together compound 
interest, multiple compounding periods and nominal rate. This 
requires further research. 

Deriving a formula for compound interest 
The compound interest formula is deceptively elegant and 
its subtleties take time to grasp. In this section I discuss two 
derivations of the formula from both a mathematical and 
a pedagogical perspective, and show what it might take to 
appreciate the formula as an algebraic representation of 
exponential growth. 

The first derivation uses an additive approach and requires an 
operational view (Sfard, 1991). It builds directly on the process 
of adding interest to the principal amount. In Figure 3, I 
illustrate the steps in this process.

In line 1 the principal amount gains interest for one period, so 
the accumulated amount is the sum of P and the interest on 
P. This is then factorised to simplify the algebraic expression. 
The new expression, P(1 + i), needs to be seen as a single entity 
rather than the product of a quantity and scalar multiple – it 
is the closing balance at the end of period 1. The same process 
repeats at the end of each compounding period, but in 
choosing to work each time with the principal, P, rather than 
an iterative formula (that would substitute An), the algebraic 
representation starts to get clumsy. For example, in line 2, 
the student must recognise that P(1 + i) is the new amount 
on which interest will be gained, and be able to separate 
P(1 + i) from the adjacent i in order to recognise the similarity 
with the structure in line 1. As the process continues, it leads 
to the general formula for the accumulated amount at the 
end of period n, P(1 + i)n. In this context, it is obvious that n 
represents the number of times that interest is compounded.

The intermediate steps shown in the ‘process’ column enable 
one to distinguish between the opening balance for each period 
and the amount of interest that accumulates in that period. 

From the point of view of algebraic manipulation, it is 
fortunate that the expression simplifies elegantly each time, 
reducing to an exponential form. In the ‘process’ column I 
have deliberately used square brackets to distinguish between 
the accumulated amount at the beginning of the period and 
the new factor of [1 + i] that emerges from factorisation. This 
step of factorising is key in establishing the formula. If one 
chooses to expand rather than factorise, one ends up with 
a very messy expression such as A3 = Pi3 + 3Pi2 + 3Pi + P at 
the end of period 3. This expression does not point obviously 
towards the elegant formula. 

Whilst those who have done more advanced mathematics 
may recognise in this expression the binomial expansion of 
(1 + i)3, those who are deriving the formula at school level 
will not have encountered this expansion and so their 
manipulation takes them away from the desired formula 
rather than closer to it. This may not be obvious to them – they 
have expanded and then collected like terms, so they may 
initially feel that they are making progress. However, in my 
experience, they soon realise that this formula gets increasingly 
complex and, although there may be a recognisable pattern 
and a repeatable process, the output for each period cannot 
be succinctly reduced to a ‘simple’ formula. 

Students may not easily recognise the multiplicative 
structure in the process until they are able to produce the 
simplified expression. They may then accept that the growth 
is exponential only because of the form of the expression, not 
because of the process that has led to the formula. This makes 
it even more important that they understand the derivation 
of the formula – to recognise that adding to the whole a scalar 
multiple of the whole produces an exponential relationship. 

However, a disadvantage of the algebraic compression in the 
last column is that it may obscure the interest-gaining process 

Line End of 
period Expression for process of compounding Simplified 

expression

1 1 1A P Pi= +  1 (1 )A P i= +  

2 2 2 (1 ) (1 ) (1 )[1 ]A P i P i i P i i= + + + = + +  
2

2 (1 )A P i= +  

3 3 2
3

2 2(1 ) (1 ) (1 ) [1 ]A P i P i i P i i= + + + = + +  
3

3 (1 )A P i= +  
4 ...

5 n 1 1 1(1 ) (1 ) (1 ) [1 ]nn n
nA P i P i i P i i− − −= + + + = + + (1 )n

nA P i= +

An = amount accumulated at the end of period n, P = principal amount invested, i = interest 
rate per period.

FIGURE 3: An additive approach to deriving the compound interest formula.
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until one recognises that multiplying repeatedly by a factor 
of (1 + i) models the process of growing by a proportion of the 
original quantity, which, in financial terms, is the gaining of 
interest on interest. This is not a simple transition. It requires 
that students operate with the object (1 + i). Drawing on 
Sfard’s (1991, 1992; Sfard & Linchevski, 1994) operational-
structural distinction, initially students may see P(1 + i) only 
as the outcome of the process of algebraic simplification 
and not as an object to be operated with. Once students accept 
P(1 + i)k and (1 + i) both as objects, they may be satisfied to 
work as in Figure 4.

In Figure 4, the student must recognise that for any month k, 
the expression P(1 + i)k ‒1 represents the accumulated amount 
from the previous month, and that the compounding process 
can be modelled by multiplying by a factor of (1 + i). There 
is no explicit separation of the accumulated amount from the 
interest. Each factor of (1 + i) should be seen as a unit growth 
factor over a particular time period, but it is not possible 
to determine the interest accumulated for any time period 
without further (albeit simple) calculations. As Bakker et 
al. (2006) argue, becoming familiar with this multiplicative 
approach is an essential step in working with percentage. 
Once students accept the exponential form, they are likely 
to recognise that the increase is always the same multiple 
of the previous amount. If the unit growth factor should 
change in the future after a certain number of periods m 
(where m < n), it may be possible for them to appreciate that 
the new formula will be An = P(1 + i1)

m (1 + i2)
n‒m where i1 and 

i2 are the different interest rates. 

Financial aspects of teachers’ 
knowledge
In order to unpack (Ball, Bass & Hill, 2004) the mathematics of 
compound interest for learners, teachers will likely draw on 
percentage calculations and exponential growth. In addition, 
unpacking may involve some reference to the world of 
banking and the ways in which interest works in banks. In this 
section I discuss two elements of the contextual knowledge 
of finance that will enable teachers to make appropriate links 
between the mathematics of compound interest and banking 
practice. I begin with daily interest calculations, followed by 
a discussion of the efficiency and accuracy of the compound 
interest formula as a model of compound growth. I conclude 
this section with some suggestions of the broader financial 
and socio-economic knowledge that would enable teachers 
to give learners access to the everyday world of finance. 

Interest in the world of banking
Earlier I noted that the selected textbook examples did not 
reflect the complexity of the banking world where interest 
is calculated daily and (in most instances) compounded 
monthly. This means that interest calculations done each 
day use a daily interest rate, and interest is calculated on the 
balance in the account at midnight3. However, the interest is 
not added to the account until midnight on the last day of 
the month. Thus we need to distinguish between calculating 
interest and compounding interest. Each day banks use a 
percentage calculation to determine the amount of interest 
for the day. They do not make use of the simple or compound 
interest formula. Below I summarise the details of daily 
interest calculations with monthly compounding. Elsewhere 
I have used a ‘bucket analogy’ to illustrate this process of 
daily interest calculations and monthly compounding. (See 
Pournara, 2012, for a detailed discussion of this analogy.) 

Consider a scenario where R500 is invested for a year at 
10% p.a. with daily calculation of interest and monthly 
compounding, as shown in the spreadsheet extract in Table 1. 
Whilst all calculations were done with maximum accuracy, 
only some columns show six or more decimal places. The 
daily interest rate is based on a day count convention of 
365 days, where the daily rate is calculated by dividing the 
nominal annual rate by 365 irrespective of the actual number 
of days in the year. Thus the cumulative interest for January 
is calculated as follows: 10% ÷ 365 × 31 × 500 = R4.25 (to 
two decimal places). Note that more interest accumulates 
in January than in February despite the opening balance for 
February being higher. This is because there are fewer days 
in February. Thus we see that in simple interest scenarios, the 
interest is not constant for each month. 

If the spreadsheet is continued for a full year, it will give an 
accumulated amount of R552.356352 (to six decimal places) 
whilst the compound interest formula gives an answer of 
R552.356354 (to six decimal places). The difference is less 
than 0.0003%. 

The compound interest formula as a model of 
compound growth
The compound interest formula provides a very accurate and 
efficient model of daily interest calculations with monthly 
compounding. I discuss this briefly, but see Pournara (2012) 
for a more detailed illustration.

In order to compare the accuracy of the compound interest 
formula with actual calculations done in the bank, one needs 
to consider its implicit assumptions as well as the different 
day count conventions. The formula assumes that all months 
have the same number of days and that there are an equal 
number of days in each year. There is a range of different 
day count conventions in use across the world. Rand-based 

3.In reality banks may not carry out this process exactly at midnight. It will take place 
at some point after close of business, and forms part of a broader daily reconciliation 
process that may take several hours to complete. I therefore refer to ‘midnight’ in a 
metaphorical sense. The key issue is that interest is calculated (or compounded) at 
discrete points in time and not continuously. 

Line End of period Expression for compounding Expression for 
accumulated amount

1 1 1 (1 )A P i= +  1 (1 )A P i= +

2 2 2 (1 )(1 )A P i i= + +  
2

2 (1 )A P i= +

3 3 2
3 (1 ) (1 )A P i i= + +  

3
3 (1 )A P i= +

4 ...

5 n 1(1 ) (1 )n
nA P i i−= + +  (1 )n

nA P i= +

FIGURE 4: A multiplicative approach to deriving the compound interest formula.
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products use a 365-day convention whereas the typical 
standard for US dollar-based markets is 360 days. There are 
other markets that use an actual-day convention where the 
nominal annual rate is determined by the actual number 
of days in the year. In Table 2 I summarise the accuracy of 
the compound interest formula as a model of these three 
different scenarios. I compare the answer from daily interest 
calculations (as shown in Table 1) with the answer from 
the formula. I refer to the latter as the predicted answer. By 
choosing the most extreme case for each scenario, I indicate 
the maximum possible error. As can be seen, the maximum 
error is less than 1.72%. 

In this section I have shown that a gap exists between the 
notion of compound interest as presented in textbooks and 
the compounding of interest in the world of banking. If 
teachers are to bridge this gap for themselves and ultimately 
for their learners, they require a wide range of knowledge 
that is generally not found in school texts or university-
level introductory financial mathematics texts. For example, 
they require contextual knowledge such as daily interest 
calculations and international day count conventions. 
They also require knowledge of basic modelling practices, 
including the notion of error in mathematical models, and 
appropriate metaphors and analogies to explain the daily 
banking process. 

Knowledge of socio-economic issues and 
financial literacy
Ideally, mathematics teachers should give learners access to 
the everyday world of finance, in addition to mathematical 
basics of compound interest and annuities. To do this, they 
require knowledge of a range of financial concepts and 
conventions in addition to those mentioned above. This 
might include the notion of the time value of money, which 
is a fundamental construct underpinning all financial 
mathematics. Knowledge of interest rates such as the repo 
rate and prime rate is important since these ultimately impact 
the banks’ rates. Changes in the repo and prime rates provide 
opportunity to gain an appreciation of the substantial impact 
over time of small changes in interest rates, particularly on 
loans. The distinction between nominal and real interest 
rates is important because the latter takes inflation into 
account; thus, some knowledge of inflation is also beneficial 
for teachers. 

Teachers also require knowledge of general socio-economic 
issues and financial literacy. It is well-known that levels of 
financial literacy in South Africa are low (Eighty20, 2008), 
that levels of national and personal debt are extremely high, 
and that the general public does not appreciate the negative 
impact of compound interest on borrowed money (South 
African Reserve Bank, 2012). Therefore, mathematics teachers 
have a moral imperative to help learners to appreciate the 
power of compound interest on both investments and loans, 
thus increasing learners’ levels of financial literacy. Whilst 
some might argue that this is not the responsibility of the 
mathematics teacher but rather of teachers of commercial 
subjects, I argue that an appreciation of the power of 
compounding comes from knowledge of exponential growth 
and it is the mathematics teacher who will open up learners’ 
access to this knowledge. 

Inevitably this raises concern about the breadth (Ma, 1999) 
of knowledge required of mathematics teachers. It could 
be argued that the knowledge of financial and economic 
issues identified above forms part of the knowledge base 
for general financial literacy of economically active citizens, 
and so a mathematics teacher who is financially literate 
will possess sufficient contextual knowledge. However, the 
detailed knowledge of daily compounding and day count 
conventions is not part of general financial literacy. This 
suggests that mathematics teachers’ knowledge of financial 
and economic issues is specialised and extends beyond 
general levels of financial literacy. 

Pedagogical aspects of teachers’ 
knowledge
This section is concerned with aspects of a teacher’s 
knowledge base for compound interest that are primarily 
pedagogical. However, as will be seen, mathematical aspects 
are always present in the background, and at times are 
brought into sharp focus. I begin with two instances of 
student error that emerged in the study, and conjecture that 
these errors may be a consequence of overgeneralisation of 
previous learning (Olivier, 1989). The first error relates to 
multiple compounding periods and the overgeneralisation 
of linear thinking. The second relates to depreciation and 
the overgeneralisation of reversible operations. Thereafter 
I make suggestions for the teaching of compound interest 

TABLE 1: Cumulative interest based on daily interest calculations and monthly compounding.
Month No of days Opening balance Daily interest rate Daily interest Cumulative interest for period Closing balance
January 31 500.00 0.00027397260 0.136986 4.246575 504.25
February 28 504.25 0.00027397260 0.138150 3.868193 508.11
March 31 508.11 0.00027397260 0.139210 4.315495 512.43
April 30 512.43 0.00027397260 0.140392 4.211756 516.64

TABLE 2: Comparison of daily interest calculations versus predicted amounts.
Day count convention Actual number of days in year Daily interest calculations Predicted (CI formula) Difference (daily int. calc. – predicted) % error
360 366 53.270107 52.35653372  0.913573279  1.7150%
365 366 52.506530 52.35653372  0.149996279  0.2857%
actual 365 52.356352 52.35653372 -0.000181721 -0.0003%
actual 366 52.356432 52.35653372 -0.000101721 -0.0002%
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with particular attention to key tasks and exemplifying 
mathematical practices. 

Student error – multiple compounding periods 
and linear thinking
Results from the study (Pournara, 2013) suggest that students 
have difficulty in distinguishing equal percentages of interest 
from equal amounts of interest, and may assume that equal 
interest rates per period imply equal amounts of interest per 
period. Thus, they do not distinguish adequately between 
relative quantities and absolute quantities. This error may 
not be exposed unless one explicitly focuses on the amount of 
interest per period, because the compound interest formula 
provides the final amount, which obscures how interest 
accumulates each period. The error may be evidence of 
overgeneralising of linear thinking (De Bock, Van Dooren, 
Verschaffel & Janssens, 2002; Esteley, Villareal & Alagia, 
2010), but it may also be a consequence of distortions from 
rounding and of the way we talk about accumulating interest. 

When dealing with multiple compoundings, the nominal 
annual rate is sub-divided into equal portions, depending on 
the number of compounding periods in the year, producing 
an effective interest rate per period. For example, a payment 
of R300 growing at a nominal annual rate of 9% p.a. 
compounded monthly gains 0.75% interest each month, 
since 9 is divided into 12 equal portions of 0.75. However, 
the amount of interest associated with this monthly rate is 
different each month because of compounding on the latest 
balance. In Table 3 it can be seen that interest for the first 
month is R2.25 but interest for the second month is R2.27 
(rounded to two decimal places). 

Adding the twelve interest amounts gives total interest 
of R28.14, which is confirmed by the compound interest 
formula 129%

12300 (1 ) 328.142FV R= + = . But, although the 
formula is efficient, it hides the calculation of interest each 
month and thus the fact that the amount of monthly interest 
is not constant. 

The ratios of the interest from month to month are clearly 
constant (at 1.0075) but the arithmetic difference is not constant. 
However, this may be obscured or distorted by the chosen 
numbers and by rounding. For example, the differences in 
interest between months 9 and 10, months 10 and 11, and 
months 11 and 12 are 2c, 2c and 1c respectively. This appears 
to contradict the idea that amount of interest increases 
each month, and that the amount by which it increases also 
increases. This apparent contradiction is a consequence of 
rounding. Table 4 gives the amount of interest rounded to 
five decimal places and shows that the interest amounts are 
indeed growing each month, and that the rate of increase is 

also increasing. However, when these figures are rounded 
to two decimal places, they produce the incorrect picture 
shown above.

Another contributing factor is the choice of numbers. The 
choice of R300 and 9% in the above example yields very 
small amounts of monthly interest and even smaller second 
order differences. In order to illustrate the non-constant 
arithmetic difference more clearly, it would be wiser to 
choose values such as R5000 and 20%. However, it should 
then be acknowledged that an interest rate of 20% p.a. is 
not a realistic figure in the current financial context. A third 
contributing factor is the way we talk of interest. We speak of 
adding interest to the balance at the end of each month, and so 
it is not surprising that our tendency is to reason additively 
when comparing the interest amounts in the table. Whilst we 
are indeed adding interest, the amount we add is generated 
by a multiplicative process. 

Student error – percentage change and 
reversible operations
As discussed above, percentage is a key concept underpinning 
financial mathematics, but it is a difficult concept to learn. 
One of the biggest sources of difficulty stems from the 
asymmetric nature of percentage increase and decrease; this 
difficulty extends into adulthood (Parker & Leinhardt, 1995). 
For example, increasing some amount A by 10% produces a 
new amount A', but decreasing A' by 10% does not fully undo 
the increase and so the answer is not A. It seems reasonable to 
conjecture that the source of this error is an over-generalisation 
of the symmetric nature of the familiar operations of 
addition-subtraction and multiplication-division. In financial 
mathematics this appears to lead to errors in distinguishing 
depreciation from discounting. In order to appreciate students’ 
difficulties, it is useful to compare and contrast appreciation, 
depreciation, compounding and discounting. In Figure 5 I 
define each term and provide a formula for each process. 

TABLE 3: Different interest amounts per month based on increasing balance.
Month 1 2 3 4 5 6 7 8 9 10 11 12
Portion of interest (%) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Interest per month (R) 2.25 2.27 2.28 2.30 2.32 2.34 2.35 2.37 2.39 2.41 2.43 2.44

TABLE 4: Amount of interest rounded to five decimal places.
Month 9 10 11 12
Interest (R, to 5 d.p.) 2.38860 2.40651 2.42456 2.44274
Difference in interest (R) 0.01778 0.01791 0.01805 0.01818

Appreciation: A sum of money gaining interest (on the 
latest balance) as we move forward in time (1 )nFV PV i= +   

Depreciation: An asset that loses value (as a percentage 
of its diminishing value) as we move forward 
in time

(1 )nFV PV i= −  

Compounding: Moving an amount of money forward in 
time at a given interest rate (1 )nFV PV i= +  

Discounting: Moving an amount of money backward in 
time at a given interest rate (1 ) nFV PV i −= +

FV, Future value; PV, Present value.

FIGURE 5: Definitions of terms.
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The formulae show that the notion of unit growth factor 
(1 )i±  applies to all four processes, that appreciation and 
compounding make use of the same formula, and that 
compounding and discounting are reverse operations (and 
hence symmetrical), but appreciation and depreciation are 
not. In my experience, students may view depreciation as the 
reverse of appreciation or compounding. 

Consider Question 2 from the textbook examples discussed 
above. Using the compound interest formula, we can 
determine that 

( ) 04.25% 2
4

4500
1

3642.60PV R
+

= = . However, students 

may approach such problems by depreciating the future value 
for 20 periods as follows: ( )4.25% 20

44500 1 3634.39PV R= − = . 
This error suggests that students are treating compounding 
and depreciation (with reducing balance) as reverse operations. 
This is not surprising on one level because the compounding 
process ‘adds on’ a percentage of the latest balance at the 
end of each compounding period, whilst the depreciation 
process removes a percentage of the balance. The error lies in 
the referent to which the percentage applies, but this may be 
less obvious when using the formulae than it is when doing 
a single percentage change calculation. 

Whilst the discussion above may not be appropriately 
calibrated for school level, it highlights some of the 
knowledge required by teachers. Firstly, mathematical 
knowledge that the ‘multiplicative differences’ (i.e. ratios) 
are constant but the ‘additive differences’ are not. Secondly, 
knowledge of how learners may reason; for example, (1) 
learners may notice the different gaps between amounts and 
question the apparent contradiction that the rate of increase 
of the interest is not always increasing, (2) that a comparison 
based on additive reasoning is intuitive and sensible, (3) that 
the ‘additive problem’ does not lie in rounding of monetary 
amounts, but (4) that a comparison based on ratios is constant 
(and is based on the unit growth factor (1 + i). Furthermore, 
teachers require knowledge of how to explain that the ratios 
are equal, and why the differences are not. This is indeed a 
challenging task.

Implications for teaching compound interest
As noted earlier, the curriculum constraints place substantial 
limitations on what might be achievable in terms of teaching 
and learning compound interest. Nevertheless, in this section 
I make some suggestions for opportunities to capitalise (pun 
intended!) on compound growth to expose learners to more 
general mathematical practices. I also identify four key tasks 
that lever up key mathematical ideas that extend beyond the 
realm of compound interest. 

Although compound interest tasks at school level tend to 
focus on numeric work, there are various opportunities to 
attend to other mathematical practices, such as: 

•	 Working to different levels of accuracy and the impact of 
rounding on financial calculations.

•	 Working inductively, as exemplified in the derivation of 
the simple and compound interest formulae.

•	 Working with inverse and reversible operations; see above for 
a discussion of appreciation, depreciation, compounding 
and discounting.

•	 Working with proof on two cases of counter-intuitive 
phenomena related to compound growth: students 
can use school-level algebra to prove that the time for 
an amount to double is independent of the amount of 
money, and graphical illustrations can be used to show 
powerfully that compound growth is slower than linear 
growth within the first compounding period. 

Related to these practices I suggest three tasks that foreground 
the key ideas of compound interest whilst simultaneously 
exemplifying key mathematical ideas: 

•	 Strategic choices for interest rates that do and do not lead to 
a recurring decimal value in relation to the compounding 
period. Such choices are determined by the goals of the 
task: it may not be desirable to include the complexity 
of a recurring decimal when focusing on the impact of 
the number of compounding periods, but it is essential 
to work with a recurring decimal value to emphasise the 
impact of rounding errors in financial calculations; for 
example, 6.5% p.a. compounded monthly gives a nominal 
monthly rate of 0.541666…%.

•	 When compounding, the growth of any amount tends to a 
limit. Based on the limited range of examples of multiple 
compounding periods that learners are exposed to, they 
may assume that the amount of interest increases without 
bound as the number of compounding periods increases. 
However, it can be shown both numerically and 
analytically that the accumulated interest tends to a limit 
as the number of compounding periods tends to infinity. 
(See Samson & Pournara, 2013, for a detailed discussion.)

•	 Simple interest grows faster than compound interest in the first 
compounding period. Whilst learners soon appreciate that 
compound interest has a higher yield than simple interest 
at the same interest rate over the same time period, it 
is not intuitive that this relationship is reversed during 
the first compounding period. For example, if R300 is 
invested at 12% p.a. with simple interest (1%) added 
at the end of each month, by the end of month 6 it will 
have grown to R318. By contrast if the same amount is 
compounded annually at the same rate, it will grow to 
only 300(1.12)0.5 = R317.49 by the end of six months. 

Conclusion
In this article I have illustrated the specificity of teacher’s 
mathematical knowledge for teaching compound interest, 
and have argued that it has mathematical and pedagogical 
components, as well as requiring contextual knowledge 
of finance. I have proposed a theoretical elaboration of the 
notion of compound interest and discussed two errors made 
by students in the broader study. In discussing key practices 
of working with interest in the banking sector, I have shown 
how these practices are removed from the typical examples 
of compound interest questions found in textbooks. Much 
work remains to be done to research the teaching and 
learning of compound interest, and the extent to which 
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teachers’ knowledge enables learners not only to answer 
textbook and assessment questions, but also to develop a 
useable knowledge of finance beyond the classroom. 
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