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It is commonly accepted that the knowledge and learning of rational numbers is more complex 
than that of the whole number field. This complexity includes the broader range of application 
of rational numbers, the increased level of technical complexity in the mathematical structure 
and symbol systems of this field and the more complex nature of many conceptual properties 
of the rational number field. Research on rational number learning is divided as to whether 
children’s difficulties in learning rational numbers arise only from the increased complexity or 
also include elements of conceptual change. This article argues for a fundamental conceptual 
difference between whole and rational numbers. It develops the position that rational numbers 
are fundamentally relational in nature and that the move from absolute counts to relative 
comparisons leads to a further level of abstraction in our understanding of number and quantity. 
The argument is based on a number of qualitative, in-depth research projects with children and 
adults. These research projects indicated the importance of such a relational understanding 
in both the learning and teaching of rational numbers, as well as in adult representations of 
rational numbers on the number line. Acknowledgement of such a conceptual change could 
have important consequences for the teaching and learning of rational numbers.
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Introduction
The 21st century has seen a resurgence of research, in both mathematics education and cognitive 
psychology, into the teaching, learning and understanding of rational numbers. A number of 
different approaches are taken in this research. Some emphasise the unity between whole and 
rational numbers, based on the observation that both represent magnitudes: quantities that can 
be represented by a point on a number line (Siegler, Thompson & Schneider, 2011). They advocate 
ways of teaching that build on this unifying property. Others, such as privileged domain theories 
(Gelman & Williams, 1998) and conceptual change theories (Ni & Zhou, 2005), emphasise the 
discontinuity between rational number concepts and whole number concepts and investigate the 
conflicts these introduce into rational number learning. In particular, Vanvakoussi and Vosniadou 
(2004) and McMullen, Laakkonen, Hannula-Sormunen and Lehtinen (2015) have identified a ‘whole 
number bias’ in peoples’ responses, when comparing the magnitudes of two rational numbers.

With regard to prior knowledge, it is generally accepted that rational number learning builds 
on a foundation of whole number understanding. Additional prior knowledge that is important 
for rational number learning but is not directly related to whole number understanding has 
been identified by McMullen, Hannula-Sormunen and Lehtinen (2013, 2014). This involves 
a comparison relational scheme, which provides a relational foundation for rational number 
understanding.

This article seeks to identify the fundamental nature of the discontinuity between whole and 
rational number concepts and relate this to the unifying conception of magnitude on a number 
line. It advances the argument that the relational property, as well is being important for the early 
teaching and learning of rational numbers, is also important for rational number understanding 
of Senior Phase and Further Education and Training learners and of adults. Furthermore, the 
relational property introduces a fundamental conceptual difference between whole number and 
rational number quantities. This difference involves a change from a quantity as an absolute 
count, to a quantity as a relative comparison. In addition, there is a corresponding increase in the 
level of abstraction of the concept of quantity.

Transitions from whole to rational number understanding
In the literature of both cognitive psychology and mathematics education, it is acknowledged 
that the development of rational number understanding involves a number of changes in the 
child’s experience related to numbers. These may be viewed in different ways and this section 
will start with a brief review of these different approaches in the literature.

mailto:b.brown@ru.ac.za
http://dx.doi.org/10.4102/pythagoras.v36i1.273
http://dx.doi.org/10.4102/pythagoras.v36i1.273


Page 2 of 8 Original Research

 http://www.pythagoras.org.za doi:10.4102/pythagoras.v36i1.273

The changes in children’s experience result in the 
development of more complex operational schemata for 
numbers. Wright (2014) includes operations such as unitising 
(including equal subdivision of wholes into part units and 
consolidation of collections of wholes into grouped units), 
iteration, rational stretching and shrinking, partitioning and 
allocation. These operations allow a number of functionally 
different conceptual structures relating to rational numbers, 
identified by Kieren (1976, 1988) and Behr, Lesh, Post and 
Silver (1983). The structures are characterised as the part-
whole, measurement, quotient, operator and ratio sub-
constructs. In addition, the child develops more complex 
numerical representations, such as fraction and decimal 
notation, and a more complex relation between symbol and 
number, seen in the multiple fraction representations of the 
same rational number.

The conceptual change orientation to rational number learning 
(McMullen et  al. 2015; Ni & Zhou, 2005; Vanvakoussi & 
Vosniadou, 2004) identifies and investigates a number of 
differences in the properties of whole and rational numbers. 
Many of these are properties of whole numbers, that are 
not properties of rational numbers. Examples (Siegler, 
Fazio, Bailey & Zhou, 2013) are: each whole number may be 
separated from the others by an open interval, the product 
of two whole numbers is generally greater than each and 
the whole numbers can be counted in their natural order. 
Two differences that have become an important focus of 
conceptual change research are the density of the rational 
numbers in the real numbers and the complexity of the 
process of ordering and comparing two rational numbers.

According to Vanvakoussi and Vosniadou (2004) and 
McMullen et  al. (2015), responses when comparing the 
magnitudes of two rational numbers appear to be related 
to the manner in which these numbers are represented 
symbolically as fractions or decimals, as well as to the 
distance between their magnitudes on the number line. 
It appears as if the use of two whole numbers to represent 
fractions may have an important influence on comparisons of 
their magnitudes, a property termed the ‘whole number bias’. 
The child’s earlier development of whole number knowledge 
thus has an important influence on their developing rational 
number concept and this influence extends into the developed 
understanding of adults. The privileged prior nature of 
whole number learning is thus held to interfere with later 
rational number learning, a view that is shared by privileged 
domain theories (Gelman & Williams, 1998).

Whole number knowledge does not appear to be the only 
prior knowledge of importance for rational number learning. 
The work of McMullen et  al. (2013, 2014) indicates that 
a cognitive comparison relational scheme, which is not 
directly related to whole number knowledge, contributes 
an additional foundation for rational number learning. The 
power of using such relational understanding for early 
formal rational number learning has been demonstrated by 
Cortina, Visnovska and Zuniga (2014). They showed that the 

capacity to view the measurement unit and the quantity to be 
measured as separate entities contributed greatly to learning 
the inverse ordering relationship for unit fractions.

The integrated theory of Siegler et al. (2011) challenges the 
view that whole number learning interferes with fraction 
learning. Siegler et  al. maintain that the property of 
magnitude is the ‘only property that unites real numbers’ 
(Siegler et al., 2013) and emphasise the importance of basing 
rational number teaching on the concept of magnitude. In 
this approach, the number line is used as a representational 
model for the conception of rational numbers as magnitudes. 
This model emphasises the one-dimensional, ordered 
nature of the number system. A teaching approach based on 
magnitude rather than the standard part-whole model has 
been researched by Moss and Case (1999) and has shown 
positive improvements in learning.

Each of these views on rational number learning offers 
important insights for the teaching and learning process. 
But taken together they may be read as conflicting and 
contradictory. This article advances the view that relational 
understanding provides a unifying perspective on these 
different views. It argues that conceptual change is indeed 
important in the learning transition from whole number 
to rational number thinking and that this discontinuity 
stems from the nature of the rational number concept. 
The interference of whole number properties in rational 
number learning then derives from the fundamental change 
in the nature of the concept of quantity, from absolute 
count to relative comparison. This change is brought on 
by incorporating the relational nature of rational numbers 
into the child’s thinking about numbers. Finally, this article 
supports the opinion that the property of magnitude unites 
whole and rational numbers, but it will argue that the 
concept of magnitude, which allows this unity, relies on a 
relational interpretation of number. The achievement of this 
unity will thus occur with the successful negotiation of this 
fundamental transition in rational number learning.

The research projects
This article draws from four exploratory research projects 
investigating rational number teaching and learning at 
different levels: in Grade R, Grade 3, Grades 4–7 and with 
teachers and student teachers. The overarching focus of these 
research projects was to investigate the manner in which 
teachers and children made meaning of rational numbers 
and the ways in which teaching influenced the meaning that 
children made of rational numbers. Each project focused 
on a different question relating to this issue. In the Grade R 
project, ways of developing Grade R children’s foundational 
knowledge for rational number learning were explored. The 
Grade 3 research focused on learners’ everyday knowledge 
relating to rational number learning. In Grades 4–7, ways of 
teaching and learning rational numbers were investigated 
in a school. The fourth project focused on student teachers’ 
and teachers’ knowledge of rational numbers. The 
primary focus of this article, the fundamental nature of the 
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discontinuity between whole and rational number concepts 
and the corresponding transition in teaching and learning, 
emerged as an important concern during the course of these 
projects. These were all small-scale, qualitative research 
projects. The first three involved English-medium primary 
or pre-schools in the Eastern Cape. The schools were all 
historically advantaged, although the first had an even mix 
of children from historically advantaged and disadvantaged 
backgrounds. This article will discuss the whole number-
rational number discontinuity, drawing on episodes from 
these projects to illustrate the emergence of this concern.

Rational numbers as relations
Relational comparisons in the common 
introduction to rational numbers
It is still common practice (Kilpatrick, Swafford & Swindell, 
2001; Lamon, 2007) for children to be introduced to rational 
numbers by working with parts of wholes. Fractions are then 
used to quantify the ‘size’ of the part in relation to the ‘size’ 
of the whole. In this way, the child experiences particular 
instances of rational numbers describing parts of objects, such 
as half of an apple, a third of a cake and even three-quarters 
of a slice of bread. By extensive repetition, it is expected 
that the child will abstract this descriptive relationship to 
form a conception of a rational number, in much the same 
fashion that earlier they abstracted the concept of a counting 
(whole) number from multiple instances of counts of objects. 
Concrete or drawn objects are soon supplanted by partially 
shaded diagrams that the child learns to describe using part-
whole ‘double counts’.

Prior learning and rational comparisons
The research of McMullen et  al. (2013, 2014) indicates the 
importance of the scheme of relational comparison as prior 
knowledge for the early learning of rational numbers. Such 
a scheme was evident in both the Grade R and the Grade 3 
research. In the Grade 3 project, in-depth clinical interviews 
with two teachers and two learners were carried out to explore 
children’s everyday knowledge for rational numbers. In one 
task, children were asked to allocate dough to containers of 
different sizes for cooking. They both competently carried 
out this task, relating the relative sizes of the containers to 
the relative sizes of the dough. But neither child was able to 
describe what they had done using quantities or relational 
terms; the most that they could offer was that one was bigger 
than the other.

The Grade R investigation reported in this article involved 
a number of clinical interviews with four children, each of 
whom could count confidently from 0‒50. A number of tasks 
were formulated that may contribute to the development of 
the children’s relational capacity. Children were asked to 
carry out the tasks and their engagement with the rational 
relation was investigated. The first task involved collections 
of easily identifiable objects, such as models of people and 
drawings of bicycles and tricycles. For each collection, 
children were asked to count the objects in the collection 

and also to count the number of specific components of the 
objects in the collection (arms for people, wheels for bicycles 
and tricycles). Toy models were presented for the collections 
of people and pictures of bicycles and tricycles were shown. 
The tasks for each object were presented in sequence, starting 
with a single object, then presenting collections with more 
and more objects. Finally a number of objects was specified 
(without a physical or diagrammatical presentation) and the 
child was asked to work out how many components would 
be in a collection with that number of objects. Firstly, no help 
was given for the final task, but if little progress was made, 
the child was encouraged to draw.

For each sequence, the children confidently counted wholes 
and components. Also, they stated how many components 
were included in each whole. For example, two arms for each 
person. When asked to compare the counts of wholes and 
components, they would only state that there were more 
components than wholes, and if more detail was requested, 
they reiterated the relationship for each whole. In the final 
task of the sequence, they were not able to determine the 
number of components without a drawing, but they were 
able to make an appropriate drawing and correctly count 
the components from this. In a further task sequence, the 
children were asked to count handles and wheels of a number 
of tricycles. In this case, they were not able to formulate 
the relationship of 2 handles to 3 wheels (even for a single 
tricycle) and also they found great difficulty in drawing a 
collection with a given number of handles.

It appeared as if the children were working with a constitutive 
object-component relationship for each object (how many 
arms were needed to form a person), rather than a numerical 
relationship between quantities. For when asked to describe 
the relationship, they either gave the number of components 
for each whole or they stated that there were more components 
than wholes. And without prompting, they did not give the 
total number of objects and components for comparison. In 
the final sequence, the only response was that there were 
more wheels than handles, showing some difficulty in 
working with component-component relationships.

In subsequent tasks, drawings of scoops of ice cream in 
different containers were used. Firstly, the children were 
shown a drawing of a single container and asked to count the 
number of scoops in this container. Then they were shown 
pictures of different numbers of containers and asked how 
many scoops of ice cream would be needed for the containers. 
Children worked with three sequences, first with cones  
(2 scoops per cone), then cups (3 scoops per cup) and lastly 
bowls (6 scoops per bowl). Each child was able to identify and 
describe the relation for each container (each cone has 2, each 
cup has 3 and each bowl has 6). For each sequence, they were 
then shown a single empty container and then two empty 
containers. They all needed some help with these first two 
counts (in the form of the researcher verbally reiterating the 
number of scoops per container shown by the first picture) as 
they became familiar with the task. They generally worked by 
indicating empty containers with their fingers and counting 
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finger taps for each ice cream scoop in the container. Having 
successfully completing the two-container task, they were all 
able to confidently and quickly count how many scoops were 
needed in different numbers of cones or cups, showing an 
effective use of the 1–2 and 1–3 relation. For the bowl, they 
found it difficult to count finger taps, tending to lose count 
and so count either more or less than six for some bowls, but 
they could confidently draw and then count the final result.

The children did not use fractions to describe what they were 
doing. They also did not describe the relationships between 
their counts of objects and components (or containers and 
ice cream scoops) in multiplicative terms. But they were able 
to confidently use and describe the number of components 
for each object and the number of ice cream scoops per 
container. Note that it is the invariant numerical relationship 
between object and component, or container and scoop, 
that is quantified by a rational number. From the children’s 
responses, it appeared as if this numerical relationship may 
be founded on their initial awareness of the constitutive 
relationship between object and components (or container 
and contents), the necessary relationship for properly forming 
the object or filling the container. This prior knowledge could 
form an experiential foundation for the child’s developing 
concept of rational number quantities.

Changes in the concept of ‘quantity’ in rational 
number learning
It is commonly accepted (see Verschaffel, Greer & De 
Corte, 2007, for a review) that a young child’s learning of 
whole numbers builds on the conception of a quantity as a 
completed count of discrete objects. The process by which 
this conceptualisation is developed has been extensively 
researched. When children use whole numbers to identify the 
numerator and denominator of a fraction, they will thus be 
working conceptually with two completed counts of discrete 
objects. In the classical introduction to fractions, these are: 
the completed count of discrete pieces in the whole and the 
completed count of discrete pieces making up the identified 
part. But the rational number is neither of these quantities. 
Rather, it quantifies the relationship between these two 
whole number quantities.

What is more, because of the density of the rational numbers, 
it is not possible to reduce this relationship to a single count. 
No matter what counting unit is chosen, infinitely many 
rational relationships would require a subdivision of this unit 
to be accurately quantified. Quantifying these relationships 
would then require two counts (one of them a count for 
the subdivision). For this reason, quantifying a rational 
relationship is intrinsically more complex than quantifying a 
count. To properly conceptualise rational number quantities, 
we thus need to change our view of ‘quantity’ from something 
relating only to single whole number counts, to something 
more suitable to rational numbers.

The Grade 4–7 research project involved regular weekly 
meetings, for the duration of the second and third terms, 

with eight teachers who taught Grade 4‒7 mathematics 
in the school. Teaching materials and samples of learners’ 
work were collected for analysis. In the third term, teachers 
were individually interviewed and weekly Grade 4 classes 
were attended, in which the researcher was free to interact 
with the children. These teachers considered an important 
element of rational number learning to be the use of fractions 
to describe the size of the identified portion in a part-whole 
subdivision. To contribute to this learning, children were 
asked to complete worksheets containing tasks such as that 
shown in Figure 1. It was expected that the comparison 
relation in part (b) would be determined by a simple visual 
comparison of the shaded regions (valid because the wholes 
were the same size).

In answering this question, most children confidently counted 
the total number of subdivisions in each block, as well as the 
number of shaded subdivisions, to arrive at fractions (A: 5/8 
and B:  4/6) describing each part-whole configuration. But 
in part (b) many children responded A  >  B, a relationship 
that would fit a comparison of counts of the total number of 
blocks and of the numbers of shaded (or unshaded) blocks. In 
the following question, where the comparison was between 
two unit parts, many of these children had responded  
1/8 > 1/6. When it was mentioned to these children that part 
(b) was asking them to use the fraction numbers to describe 
what they saw (which looked bigger) they immediately and 
confidently changed the relation to A < B.

Without any further prompting, many also changed their 
following response to 1/8 < 1/6. It appeared from this 
interaction that the children’s initial response was because 
they did not understand that part (b) was asking for a 
simple visual comparison. That is, that they were not clear 
that the purpose of part (b) was to show one way of making 
sense of the fraction quantities constructed in part (a). 
Rather, they seemed to see this task as asking them to use 
their understanding of whole numbers as counts, and the 
relational signs as describing order between whole numbers, 
to compare these composite fraction symbols. Once it became 
clear to them that the comparison was not of the counts, but 
of a different (visual) comparison of size, they confidently 
and correctly completed the worksheet.

Once the orientation of the task had been clarified, the 
comparison task helped the children realise that fraction 
quantities were not the same as simple counts. Most of the 
class readily came to this realisation. But the comparison did 

a.  Name each of the fractions

b.  Write a number sentence (using <, =, or >) to compare
      these fractions

A

B

A.

B.

A B

FIGURE 1: Example fraction task: What is being quantified?
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depend on the fact that in each question, the wholes were the 
same size, a constraint that was not clearly specified in the 
task. Thus, the importance of the whole was downplayed in 
this task. In the same research project, a different teaching 
sequence was observed that brought in the size of the whole 
for consideration. It was interesting that the children did not 
appear to engage readily with this aspect of the task.

This teaching sequence involved concrete experiences of 
sharing, as related to fractions. In the first two lessons, the 
teacher grouped the children into twos, threes or fours and 
asked them to share some given food items (such as 3 hot dogs 
or 1 cookie) fairly amongst the group. The children took great 
care to ensure that the portions were all equal. They were 
also able to confidently use fractions to describe the shares, 
showing familiarity and competence with fraction notation. 
In the third lesson, the class was grouped into pairs and each 
pair was given an apple to share. In preparing the lesson, the 
teacher had deliberately chosen apples of different sizes for 
sharing. The children divided their apples quite accurately 
into halves and reported that each had received a half of 
their apple. Then the teacher asked if all the children had the 
same amount of apple. The initial response of the children 
was that they did: they all had half an apple. When asked to 
physically compare their halves they noticed the difference 
in size, but they found this difficult to reconcile with the fact 
that they had shared fairly in their pairs to each get half an 
apple. The teacher explained that the original apples were of 
different sizes and so the halves would be different, but this 
explanation did not appear to dispel the confusion. The fair 
sharing in pairs, together with the fact that each had the same 
fraction of an apple appeared to outweigh the explanation 
given after the sharing, that the whole apples were initially 
different sizes.

We were left with the question of whether the effect of 
the whole may have been more readily acknowledged 
if the children had been explicitly asked to compare the 
sizes of the wholes before the sharing and if the aim of the 
activity had been presented as ‘looking to see what would 
happen if different size wholes were shared’. Later work 
with individual children based on a supplementary task 
developed to explore the relational theme suggested that 
children may naturally identify the size of the objects being 
halved as a reason for halves being different sizes. The task 
given was:

James has a chocolate. He gives half to Peter. He gives half of 
what is left to Bob. Are these two halves the same?

Here the immediate response was that these halves were 
not the same. The reason given was that, for Bob, what was 
divided was smaller.

These interactions suggest that, with suitable activities,  
Grade 4 children may come to see rational number quantities 
as related to the amount in a part, rather than a simple count 
of pieces. Also that they may come to understand that the 
size of these amounts varies with both the rational number 

describing the amount and the size of what is considered as 
the whole. Three important components may be identified in 
this relationship: the part amount, the whole amount and the 
comparative rational number. Activities suitable for the Grade 
4 child may allow the investigation of the effect of changing 
any single element on another, whilst holding the third fixed. 
It is questionable whether learners of this age would be able 
to effectively engage with the effects of covariation of two 
elements; this would require considerably more sophistication 
in thinking than would be expected of a Grade 4 child.

Teachers and the relational nature  
of rational numbers
A relational understanding is also useful for teachers, 
allowing more flexible and appropriate interpretations of 
children’s responses. An example of this is provided in the 
teacher’s interpretation of answers (shown in Figure 2) to the 
following question in a Grade 5 class test:

Use drawings to show how you would share 5 slices of bread 
among 2 people. What fraction would each person get?

The first two responses were unsurprising, but the third 
was different. Nonetheless, the teacher suspected that the 
child may have appropriately thought through the question. 
After the test, she asked the child to clarify the response. The 
child explained that each slice was cut into two equal parts 
and five of these ten pieces were then given to each person. 
So each person got 5/10 of the bread. In this response, the 
fraction describing each person’s share was obtained by 
comparing the share with the total amount of bread. This 
is in contrast to the other two, which compared the share 
to one slice of bread. Here the rational number describing 
the share changes, depending on the choice of reference 
unit. It describes the relationship between the share and 
the chosen unit. That is, the rational number is a relative 
quantity and the chosen reference unit needs to be known in 
order for the absolute magnitude of the share to be known. 
Understanding this relationship allowed the teacher to 
respond appropriately to the child’s answer, resulting in a 
positive learning experience.

The relational nature of rational numbers in 
repeated subdivisions
The importance of relative comparisons in the early learning 
of rational numbers raised the question of whether such 
comparisons may be important in the developed adult 

2½

5/2

5/10

FIGURE 2: Responses to sharing five slices of bread between two people.
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concept. To further explore this question, a further research 
project was undertaken, in which a number of simple rational 
number tasks were administered first to five teachers and 
later to 22 student teachers. The participants were observed 
as they worked on these tasks. Their responses are discussed 
in this section.

In tasks relating to repeated subdivision, adults did appear 
to relate fraction quantities to a reference whole, although 
this whole was not always appropriately chosen. They were 
appropriate in adults’ responses to the simple question 
described before:

James has a chocolate. He gives half to Peter. He gives half of 
what is left to Bob. Are these two halves the same?

Here the immediate response was ‘No’: Peter received more 
because he received half of the whole chocolate, whilst Bob 
received half of a half. Many adults immediately added 
that Bob received a quarter of the chocolate. Converting 
the representation of Bob’s amount to a fraction of a whole 
allowed a direct comparison of the quantities as parts of 
the same whole. Others did not, identifying instead the 
different sizes of what was subdivided. With prompting, 
these adults made the conversion and quantified the 
comparison.

However, when asked to work with repeated subdivisions in 
a more abstract task, many adults did not choose appropriate 
reference units. Adults were asked to draw each of the 
fraction quantities in the repeated subdivision: 2/3 of 3/4 
of 1/2 and then to draw the final amount. The response of 
all the adults (both teachers and students) was to separately 
draw each of these fractions as parts of a whole of the same 
size and shape. To draw the final amount, some of the adults 
(mainly Grade 9–12 teachers) drew a single diagram showing 
the successive subdivision of a single whole, successfully 
identifying the composite quantity. To enable the other 
adults to draw the final amount, it was generally necessary to 
draw their attention to the repeated nature of the subdivision 
as indicated by the term ‘of’.

A further task was the following puzzle:

You make three inventions to improve the fuel efficiency of a 
machine. One saves 30% of fuel, a second saves 45% and a third 
saves 25%.

How much fuel can you save if you use all three inventions at 
once?

In their first approach to this puzzle, all the adults first 
added the percentages together to come to a combined 
saving of 100%. They then noted that a 100% savings was 
not practically possible and many looked for alternative 
approaches. Some, however, saw this as demonstrating the 
difference between mathematics and the ‘real world’ and 
were happy to say that 100% gave a mathematical solution 
that was unrealistic. Those who searched for an alternative 

approach generally resorted to some sort of averaging 
procedure. One group of adults was given this question 
immediately after the chocolate subdivision question and 
they were told that these problems could be usefully related. 
But this had very little effect on their solutions. This group 
were then prompted to see the inclusion of the inventions 
as a process in which one was included after the other, and 
to calculate the savings accordingly. In response, half of the 
group appropriately calculated composite proportions of fuel 
use (70%, 55% of 70% and 75% of 55% of 70%). The remainder 
needed a second prompt: asking what the initial fuel use was 
before the second invention was included. Once the process 
of finding cumulative proportions became clear, the adults 
responded convincingly to the puzzle (with varying degrees 
of calculational efficiency).

These responses indicated that, for both abstract and situated 
repeated subdivision tasks, adults naturally interpreted the 
rational quantity in relation to a reference unit. But, unless 
they were clearly and explicitly stated as being different, the 
reference unit was taken as the same for each rational quantity 
in the task. This made abstract repeated subdivisions rather 
confusing. These results suggest that a relational comparison 
may indeed be part of adults’ conception of rational numbers, 
but that the reference unit may generally be standardised, 
resulting in a lack of flexibility in the relational use of this 
concept.

The number line: Magnitude as a 
relational concept
Identity and embedding
The observation that the property of magnitude unites whole 
and rational numbers is fundamental for the integrated theory 
of Siegler et al. (2011). But deducing from this that there is 
no fundamental conceptual change in the child’s transition 
from whole number thinking to rational number thinking 
depends on a conflation between the ideas of identity and 
of embedding. For magnitude is indeed a common property 
of these numbers, when viewing both whole numbers and 
rational numbers as embedded in the real number field. But 
the child, who has no conception of real numbers, does not 
view these numbers as real numbers and so this may not be 
a common property when viewed in terms of conceptual 
development. To be precise, this is a common property of the 
images of whole and rational numbers under the respective 
embeddings of the whole and rational number structures 
into the real number field. This configuration of embeddings 
is represented diagrammatically in Figure 3.

An identification of a mathematical object with its image 
under an embedding is common in axiomatic mathematical 
practice. In this case, the embedding allows the domain to 
inherit the additional structure of the range space. But, 
when investigating conceptual development, this inherited 
structure originates in the additional conceptual structure 
of the range, not in the original conceptual structure of the 
domain.
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The property of magnitude that unifies whole and 
rational numbers is the capacity of these quantities to be 
represented by a point on the real number line. This is a 
property of the images of these numbers when embedded 
in the real numbers. But the question remains whether 
this is a property of these number concepts before they are 
subsumed in the development of the later and richer real 
number concept. This question may be answered by the 
investigation of the relational nature of the number line as 
a model of quantity.

The relational nature of rational numbers and 
the number line
To investigate adults’ use of the number line as a conceptual 
model for rational numbers, students and teachers were 
presented with a blank number line marked only with a zero 
point and asked:

Where can you place 15/4 on the given number line?

In each case, the respondent’s first action was to mark ‘1’ as a 
unit on the line. The immediacy with which this was carried 
out suggested that this action was an automatic first response 
to the number line task. Once the unit had been marked, 
adults determined the approximate position of 15/4, based 
on the distance between 0 and 1. When asked if 15/4 could 
have been placed anywhere else, they replied ‘No’.

The observation that in each case, the unit (1) was placed 
first, and that this placement was immediate, suggests that a 
reference interval, such as [0.1], may be an implicit component 
of the number line that forms a conceptual model for rational 
numbers. The placement of the unit identifies an interval that 
determines the scale of the line and this uniquely determines 
the position of any other number on the line. It may be noted 
that, even though the research participants each placed a ‘1’ 
as the unit, the scale would have been determined by the 
placement of any non-zero number on the line.

In a second query, I called their attention to the fact that they 
had first placed the 1 and asked where they could place the 
15/4 before the 1 was placed. Generally, the response to 
this was ‘Anywhere’. These adults were thus aware that a 
number line with a zero but no reference interval (or scale) 
did not fully define absolute magnitude: the 15/4 could then 

be placed anywhere. The placement of a magnitude as a point 
on the line only becomes absolute once a single reference 
quantity has been placed, through the need to maintain the 
correct rational relationship with the reference quantity.

The need for a reference unit to fully specify the point for 
any number on the line (even a whole number) suggests that 
this conceptual model of magnitude is a relational (relative) 
model, rather than an absolute model. That is, working with 
whole or rational numbers as magnitudes uniquely placed 
on the number line will require a conceptual transition from 
numbers as absolute counts, to numbers as relational, in this 
case relative to the chosen reference unit. This is the same 
transition that this article argues is fundamental for the 
child’s learning of rational numbers. Taking magnitude to 
be fundamental to the abstract concept of rational numbers 
thus implies that the relational property is fundamental to 
the concept of a rational number, even in the abstract.

As a further observation, the immediate placement of ‘1’ as 
a unit by the adult participants suggests that the reference 
unit is an implicit aspect of the concept that is also generally 
standardised. That is, flexibility in the choice of the reference 
unit may not be a well-developed aspect of the rational number 
concept. This is supported by the observation that adults 
first responded as if the position of the number 15/4 was 
fully determined and also by the observation that common 
diagrams of fractions in repeated subdivisions, such as 2/3 
of 3/4 of 1/2, showed each fraction as a part of a whole of 
the same size. In both cases, when the possibility of changing 
the reference unit was brought to their attention, adult 
participants were able to usefully engage with the flexible, 
relational nature of the rational number. But this flexible 
relational engagement generally needed to be prompted.

Possible implications for teaching
This view of the conceptual change between whole and 
rational numbers has a number of implications for teaching. 
An important change at the outset would be to strengthen 
and build on the informal relational comparison scheme. 
Then, as the child’s whole number competence grows, to 
develop ways to quantify these comparisons by relating 
counts, in this way deliberately developing rational numbers 
as a level of abstraction above that of whole numbers. The use 
of activities involving the measurement sub-construct and 
unit fractions as a means to quantify subdivision would also 
contribute to this development. The Grade R research project 
included the investigation of a number of such activities 
at the Grade R level. This will be reported in a subsequent 
article. Also, as is evident in the discussion of adults’ use of 
the number line, using number lines and teaching approaches 
building on magnitude will also contribute to developing this 
relational understanding. Another explicit focus that may 
prove valuable for the rational number transition would be 
the move to relative, rather than absolute quantities: looking 
at fractions as ‘how much of the whole’ (relative) rather than 
‘how much in total’ (absolute).

Whole Numbers

Whole Number
Images

Real number line

Real number
magnitude

Rational Number Images

Rational Numbers

Real Numbers

FIGURE 3: Embedding whole and rational numbers in real numbers.
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In the work with children in these projects, and particularly 
in the work at Grade 4 level, it appeared as if acknowledging 
the fundamental difference between whole numbers as 
counts and rational numbers as relational comparisons 
may be a powerful lever for helping the child to achieve 
the transition to rational number thinking. In a number of 
instances, discussing whole numbers and rational numbers 
as different but related concepts seemed to make it easier for 
the child to consider whole and rational numbers alongside 
each other and so explore their consonances and dissonances 
to learn the interrelations between these two concepts. From 
a motivational perspective, acknowledging this difference 
when learning rational numbers allowed the child to attribute 
differences in properties of whole and rational numbers to 
differences between the types of numbers being considered, 
rather than to their own misunderstanding of number. As 
a result, children appeared to have more control and be 
more confident as they navigated this conflicting conceptual 
process. Further research related to this issue may prove 
valuable for the practice of teaching.

Conclusion
The rational number conceptual field shows more complexity 
than the whole number field, both in the scope of application 
of rational numbers (relating in different ways to a broader 
range of phenomena) and in the level of technical proficiency 
required to master the symbol systems of this field. This 
article argues for a third increase in complexity: that rational 
numbers are fundamentally relational in nature and that the 
move from absolute counts to relative comparisons requires 
a further level of abstraction in our understanding of number 
and quantity. That is, that the conceptual development from 
whole numbers to rational numbers does not simply involve 
the ‘filling in’ of the set of possible values for quantities 
(to form a dense, although not yet complete, set). Rather 
it involves a change in understanding of what a quantity 
is (from an absolute count to a relative measure) and a 
corresponding change in understanding of how a quantity 
may be measured.

This argument is based on an in-depth analysis of data 
from four small-scale qualitative research projects. Such an 
approach allows the development of deep insight into the 
particulars of the learning situation, but the conclusions 
reached are grounded only in the data of the particular 
situation. To increase the empirical base of these conclusions, 
further research would be necessary. In particular, further 
investigation of the relational nature of the number line 
for indicating magnitude will be important. Also, teaching 
experiments designed to investigate teaching that explicitly 

acknowledges the difference between the nature of counting 
and rational numbers would be fruitful.
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