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In  this study we propose a  taxonomy  for assessment  in mathematics, which we call  the 

assessment component  taxonomy,  to  identify  those components of mathematics  that can be 

successfully  assessed  using  alternative  assessment  formats.  Based  on  the  literature  on 

assessment  models  and  taxonomies  in  mathematics,  this  taxonomy  consists  of  seven 

mathematics assessment components, hierarchically ordered by cognitive level, as well as 

the nature of the mathematical tasks associated with each component. Using a model that 

we developed earlier for measuring the quality of mathematics test items, we investigate 

which  of  the  assessment  components  can  be  successfully  assessed  in  the  provided 

response  question  (PRQ)  format,  in  particular multiple  choice  questions  (MCQs),  and 

which  can  be  better  assessed  in  the  constructed  response  question  (CRQ)  format.  The 

results of this study show that MCQs can be constructed to evaluate higher order levels of 

thinking  and  learning.  The  conclusion  is  that MCQs  can  be  successfully  used  as  an 

assessment  format  in  undergraduate  mathematics,  more  so  in  some  assessment 

components  than  in  others.  The  inclusion  of  the  PRQ  assessment  format  in  all  seven 

assessment components can reduce  the  large marking  loads, associated with continuous 

assessment practices  in undergraduate mathematics, without compromising  the validity 

of the assessment. 
 

In South Africa, as in the rest of the world, the changes in society and technology have imposed pressures 
on academics to review current assessment approaches.  Changes in education assessment are currently 
being called for, both within the fields of measurement and evaluation as well as in specific academic 
disciplines such as mathematics.  Geyser (2004) summarises the paradigm shift that is currently under 
way in tertiary education as follows: 

The main shift in focus can be summarized as a shift away from assessment as an add-on 
experience at the end of learning, to assessment that encourages and supports deep learning.  It is 
now important to distinguish between learning for assessment and learning from assessment as 
two complementary purposes of assessment. (p. 90) 

Mathematics at tertiary level remains conservative in its use of alternative formats of assessment.  As 
goals for mathematics education change to broader and more ambitious objectives (NCTM, 1989), such 
as developing mathematical thinkers who can apply their knowledge to solving real problems, a mismatch 
is revealed between traditional assessment and the desired student outcomes.  It is no longer appropriate 
to assess student mathematical knowledge using general assessment taxonomies, because these 
taxonomies are not pertinent to mathematics and do not identify those levels of mathematics that can be 
assessed using alternative formats of assessment.  

With this background, we propose a taxonomy of mathematics, which we call the assessment component 
taxonomy, to identify those components of mathematics that can be successfully assessed using 
alternative assessment formats.  Using a model that we developed earlier (Huntley, Engelbrecht & 
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Harding, 2008; 2009) for measuring the quality of mathematical test items, we investigate which of the 
assessment components can be successfully assessed in the provided response question (PRQ) format, in 
particular multiple choice questions (MCQs), and which can be better assessed in the constructed 
response question (CRQ) format where students have to construct and supply their own responses 
(Engelbrecht & Harding, 2003). 

 

Mathematics assessment models 

An assessment model emerges from the different aspects of assessment: what we want to have happen to 
students in a mathematics course, different methods and purposes for assessment, along with some 
additional dimensions.  The first dimension of this framework is what to assess, which may be broken 
down into: concepts, skills, applications, attitudes and beliefs. 

Niss (1993) uses the term assessment mode to indicate a set of items in an assessment model that could be 
implemented in mathematics education. These items include the following: 

o The subject of assessment, i.e. who is assessed 
o The objects of assessment, i.e. what is assessed 
o The items of assessment, i.e. what kinds of output are assessed 
o The occasions of assessment, i.e. when does assessment take place 
o The procedures and circumstances of assessment, i.e. what happens, and who is expected to do what 
o The judging and recording in assessment, i.e. what is emphasised and what is recorded 
o The reporting of assessment outcomes, i.e. what is reported, to whom. 
 
For the purpose of this study, the focus will be on the objects of assessment in the Niss model outlined 
above, i.e. types of mathematical content (including methods, internal and external relations) and which 
types of student ability to deal with that content.  This varies greatly with the place, the teaching level and 
the curriculum, but the predominant content objects assessed seem to be the following: 

(a) Mathematical facts, which include definitions, theorems, formulae, certain specific proofs and 
historical and biographical data. 

(b) Standard methods and techniques for obtaining mathematical results.  These include qualitative or 
quantitative conclusions, solutions to problems and display of results. 

(c) Standard applications which include familiar, characteristic types of mathematical situations which 
can be treated by using well-defined mathematical tools.   

To a lesser extent, objects of assessment also include: 

(d) Heuristic and methods of proof as ways of generating mathematical results in non-routine contexts. 
(e) Problem solving of non-familiar, open-ended, complex problems. 
(f) Modelling of open-ended, real mathematical situations belonging to other subjects, using whatever 

mathematical tools at one’s disposal.   

In mathematics, we rarely encounter 

(g) Exploration and hypothesis generation as objects of assessment. 
 
With regards to the students’ ability to be assessed, the first three content objects require knowledge of 
facts, mastery of standard methods and techniques and performance of standard applications of 
mathematics, all in typical, familiar situations. 

As we proceed towards the content objects in the higher levels of the Niss assessment model, the level of 
the students’ abilities to be assessed also increase in terms of cognitive difficulty.  In the proof, problem-
solving, modelling and hypothesis objects, students are assessed according to their abilities to activate or 
even create methods of proof; to solve open-ended, complex problems; to perform mathematical 
modelling of open-ended real situations and to explore situations and generate hypotheses. 

In the Niss assessment model, objects (a) – (g) and the corresponding students’ abilities are widely 
considered to be essential representations of what mathematics and mathematical activity are really about.  
The first three objects in the list emphasise routine, low-level features of mathematical work, whereas the 
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remaining objects are cognitively more demanding.  Objects (a), (b) and (c) are fundamental instances of 
mathematical knowledge, insight and capability.  Current assessment models in mathematics education 
are often restricted to dealing only with these first three objects.  One of the reasons for this is that 
methods of assessment for assessing objects (a), (b) and (c) are easier to devise.  In addition, the 
traditional assessment methods meet the requirement of validity and reliability in that there is no room for 
different assessors to seriously disagree on the judgement of a product or process performed by a given 
student.  It is far more difficult to devise tools for assessing objects (d) – (g).  Inclusion of these higher-
level objects into assessment models would bring new dimensions of validity into the assessment of 
mathematics.  Webb and Romberg (1992) argue that if we assess only objects (a), (b) and (c) and 
continue to leave objects (d) – (g) outside the scope of assessment, we not only restrict ourselves to 
assessing a limited set of aspects of mathematics, but also contribute to actually creating a distorted and 
wrong impression of what mathematics really is (Niss, 1993).   

 

Assessment taxonomies 

According to the World Book Dictionary (1990), a taxonomy is any classification or arrangement.  
Taxonomies are used to ensure that examinations contain a mix of questions to test skills and concepts.  A 
leader in the use of a taxonomy for test construction and standardization was Ralph W. Tyler, the “father 
of educational evaluation” (Romberg, 1992, p. 19) who in 1931 reported on his efforts to construct 
achievement tests for various university courses. 

The next step was taken by Benjamin Bloom (1956), who organised the objectives into a taxonomy 
(dedicated to Tyler) that attempted to reflect the distinctions teachers make and to fit all school subjects.  
In Bloom’s Taxonomy of educational objectives, objectives were separated by domain (cognitive, 
affective and psychomotor), related to educational behaviours, and arranged in hierarchical order from 
simple to complex.  

Bloom’s taxonomy has often been seen as fitting mathematics especially poorly (Romberg, Zarinnia & 
Collis, 1990).  It is quite good for structuring assessment tasks, but Freeman and Lewis (1998) suggest 
that Bloom’s taxonomy is not helpful in identifying which levels of learning are involved.   

As Ormell (1974) noted in a strong critique of the taxonomy, Bloom’s categories of behaviour “are 
extremely amorphous in relation to mathematics.  They cut across the natural grain of the subject, and to 
try to implement them – at least at the level of the upper school – is a continuous exercise in arbitrary 
choice” (p. 7). 

Since its publication, variants of Bloom’s taxonomy for the cognitive domain have helped provide 
frameworks for the construction and analysis of many mathematics achievement tests (Begle & Wilson, 
1970; Romberg et al., 1990).  Attacking behaviourism as the bane of school mathematics, Eisenberg 
(1975) criticised the merit of a task-analysis approach to curricula, because it essentially equates training 
with education, missing the heart and essence of mathematics.  Expressing concern over the validity of 
learning hierarchies, he argued for a re-evaluation of the objectives of school mathematics.  The goal of 
mathematics, at whatever level, is to teach students to think, to make them comfortable with problem 
solving, to help them question and formulate hypotheses, investigate and simply tinker with mathematics.  
In other words, the focus is turned inward to cognitive mechanism.  

Smith et al. (1996) propose a modification of Bloom’s taxonomy called the MATH taxonomy 
(Mathematical Assessment Task Hierarchy) for the structuring of assessment tasks.  The categories in the 
taxonomy are summarised in Table 1. 

Table 1:  MATH Taxonomy (Adapted from Smith et al., 1996) 

Group A Group B Group C 

Factual knowledge Information transfer Justifying and interpreting 

Comprehension Applications in new situations Implication, conjectures and comparisons 

Routine use of procedures  Evaluation 
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In the MATH taxonomy, the categories of mathematics learning provide a schema through which the 
nature of examination questions in mathematics can be evaluated to ensure that there is a mix of questions 
that will enable students to show the quality of their learning at several levels.  It is possible to use this 
taxonomy to classify a set of tasks ordered by the nature of the activity required to complete each task 
successfully, rather than in terms of difficulty.  Activities that need only a surface approach to learning 
appear at one end, while those requiring a deeper approach appear at the other end.  Previous studies have 
shown that many students enter tertiary institutions with a surface approach to learning mathematics (Ball 
et al., 1998) and that this affects their results at university.  There are many ways to encourage a shift to 
deep learning, including assessment, learning experiences, teaching methods and attitudinal changes.  The 
MATH taxonomy addresses the issue of assessment and was developed to encourage a deep approach to 
learning.  It transforms the notion that learning is related to what we as educators do to students, to how 
students understand a specific learning domain,  how they perceive their learning situation and how they 
respond to this perception within examination conditions. 

Recently, work on how the development of knowledge and understanding in a subject area occurs has led 
to changes in our view of assessing knowledge and understanding.  For example, in Biggs’ (1991) SOLO 
Taxonomy (Structure of the Observed Learning Outcome), he proposed that as students work with 
unfamiliar material their understanding grows through five stages of ascending structural complexity.  

In the interests of higher quality tertiary education, a deep approach to learning mathematics is to be 
valued over a surface approach (Smith et al., 1996). Students entering university with a surface approach 
to learning should be encouraged to progress to a deep approach.  Studies have shown (Ball et al., 1998), 
that students who are able to adopt a deep approach to study tended to achieve at a higher level after a 
year of university study.  

 

Mathematics assessment components 

Based on the literature on assessment models and taxonomies in mathematics (Bloom, 1956; Niss, 1993; 
Smith et al., 1996), we argued that for purposes of this study it was necessary to adapt the reviewed 
taxonomies in order to address the issue of assessing the cognitive level of difficulty of mathematical 
tasks, as well as the cognitive skills associated with each level. With this background, we propose a 
taxonomy of mathematics, which we call the assessment component taxonomy, to identify those 
components of mathematics that can be successfully assessed using alternative assessment formats such 
as MCQs.  This taxonomy consists of a set of seven items, hereafter referred to as the mathematics 
assessment components.  This set of seven mathematics components was ordered by the cognitive level, 
as well as the nature of the mathematical tasks associated with each component. This mathematics 
assessment component taxonomy is particularly useful for structuring assessment tasks in the 
mathematical context. The proposed set of seven mathematics assessment components are summarised 
below: 

(1) Technical 
(2) Disciplinary 
(3) Conceptual 
(4) Logical 
(5) Modelling 
(6) Problem solving 
(7) Consolidation 
 
In this proposed set of seven mathematics assessment components, questions involving manipulation and 
calculation would be regarded as technical.  Those that rely on memory and recall of knowledge and facts 
would fall under the disciplinary component.  Assessment components (1) and (2) include questions 
based on mathematical facts and standard methods and techniques. The conceptual component (3) 
involves comprehension skills with algebraic, verbal, numerical and visual (graphical) questions linked to 
standard applications.  The assessment components (4), (5) and (6) correspond to the logical ordering of 
proofs, modelling with translating words into mathematical symbols and problem solving involving word 
problems and finding mathematical methods to come to the solution.  Assessment component (7), 
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consolidation, includes the processes of synthesis (bringing together of different topics in a single 
question), analysis (breaking up of a question into different topics) and evaluation requiring exploration 
and the generation of hypothesis. 

Using Bloom’s taxonomy (Bloom, 1956), and the MATH taxonomy (Smith et al., 1996), the proposed 
mathematics assessment components can be classified according to the cognitive level of difficulty of the 
tasks as shown in Table 2. 
 

Table 2: Mathematics assessment component taxonomy and cognitive level of difficulty 

Mathematics assessment components Cognitive level of difficulty 

1. Technical 
2. Disciplinary 

Lower order / Group A 

3. Conceptual 
4. Logical 

Middle order / Group B 

5. Modelling 
6. Problem solving 
7. Consolidation 

Higher order / Group C 

 
Table 3 summarises the proposed mathematics assessment components and the corresponding cognitive 
skills required within each component.   Based on the literature on assessment, the necessary cognitive 
skills required by students to complete the mathematical tasks within each mathematics assessment 
component were identified. 
 

Table 3: Mathematics assessment component taxonomy and cognitive skills 

Mathematics assessment components Cognitive skills 

1. Technical o Manipulation 
o Calculation 

2. Disciplinary o Recall (memory) 
o Knowledge (facts) 

3. Conceptual Comprehension: 
o algebraic 
o verbal 
o numerical 
o visual (graphical) 

4. Logical o Ordering 
o Proofs 

5. Modelling Translating words into mathematical symbols 

6. Problem solving Identifying and applying a mathematical method 
to arrive at a solution 

7. Consolidation o Analysis 
o Synthesis 
o Evaluation 

 

Question examples in assessment components 

In the following discussion, question examples within two of the mathematics assessment components 
have been identified according to Table 3.  These items, one MCQ and one CRQ, were selected from the 
tests and examinations in the first year Mathematics Major course (MATH109) at the University of the 
Witwatersrand, Johannesburg.  The classification of the question according to one of the assessment 
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components was validated by a team of lecturers (experts) involved in teaching the first year Mathematics 
Major course at the University of the Witwatersrand.  In addition, the examiner of each test or 
examination was asked to analyse the question paper by indicating which assessment component best 
represented each question.  In this way, the examiner could also verify that there was a sufficient spread 
of questions across assessment components, and in particular, that there was not an over-emphasis on 
questions in the technical and disciplinary components.  This exercise of indicating the assessment 
component next to each question also assisted the moderator and external examiner to check that the 
range of questions included all seven mathematics assessment components, from those tasks requiring 
lower-order cognitive skills to those requiring higher-order cognitive skills. 

 
Example 1: Conceptual mathematics assessment component 

Assessment Component 3: Conceptual (MCQ) 

State why the Mean Value Theorem does not apply to the function defined by 
2

2
( )

( 1)
f x

x



  on the 

interval [ 3,0] . 

A. ( 3) (0)f f   

B. f is not continuous 

C. f is not continuous at 3x   and 0x   

D. Both A and B 
E. None of the above 

MATH109 June 2006, Section A: MCQ, Question 7 
 

In the conceptual question (Example 1), the student is required to apply his/her knowledge of the Mean 
Value theorem to a new, unfamiliar situation which requires that the student selects the best verbal reason 
why the Mean Value theorem does not apply to the function f and the interval given in the question.  
This question requires a comprehension of all the hypotheses of the Mean Value theorem and tests the 
students’ understanding of a situation where one of the hypotheses to the theorem fails. 

 
Example 2: Problem solving assessment component 

Assessment Component 6:  Problem solving (CRQ) 

This question deals with the statement 

        3 3 3( ) : ( 1) ( 2)P n n n n     is divisible by 9 , for all , 2n n   

 
(1.1) Show that the statement is true for 2n  . 

(1.2) Use Pascal’s triangle to expand and then simplify 3( 3)k  . 

(1.3) Hence, assuming that ( )P k is true for 2k   with k , prove that ( 1)P k   is true. 

(1.4) Based on the above results, justify what you can conclude about the statement ( )P n . 

MATH109 June 2006, Section B: Algebra. Question 1 
 

In the problem solving CRQ (Example 2), the students are required to use the principle of Mathematical 
Induction to prove that the statement ( )P n  is true for all natural numbers 2n  . The CRQ has been 
subdivided into smaller sub-questions involving different cognitive skills to assist the student with the 
method of solving using mathematical induction.  In sub-question (1.1), the students need to establish 
truth for 2n   by actually testing whether the statement ( )P n  is true for 2n  .  Hence (1.1) assesses 
within the technical mathematics assessment component. Sub-question (1.2) involves a numerical 
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calculation, the result of which will be used in the proof by induction.  Hence (1.2) also assesses within 
the technical assessment component.  In sub-question (1.3), students are required to complete the proof by 
induction, by assuming the inductive hypothesis that ( )P k is true for 2,k k  , and proving that 

( 1)P k   is true.  Since sub-question (1.3) requires the cognitive skills of identifying and applying the 
principle of Mathematical Induction to arrive at a solution, (1.3) assesses within the problem solving 
mathematics assessment component.  Sub-question (1.4) concludes the proof by requiring the students to 
justify that both of the conditions of the principle hold, and therefore by the principle of induction ( )P n is 

true for every 2,n n  .  Hence (1.4), requiring no more than a simple manipulation, assesses within 
the technical assessment component.  This problem solving CRQ illustrates that often those questions 
involving higher order cognitive skills subsume the lower order cognitive skills. 

 

The quality index (QI) model 

The quality index (QI) model, developed by Huntley et al. (2008, 2009), can be used both to quantify and 
visualize the quality and nature of a mathematics question.  Three parameters, namely discrimination 
index, confidence index and expert opinion were used to develop the QI model to quantify the quality of a 
question.  In addition, a fourth parameter, namely the level of difficulty, was used to qualitatively 
contribute to the characteristics of a question. 

In order to graphically represent the qualities and characteristics of a question, 3-axes radar charts are 
constructed, where each of the three measuring criteria are represented as one of the three arms of the 
radar plot.   

In this model, no distinction is made between the relative importance of the three criteria in their 
contribution to the overall quality of a question.  The quality index (QI) is defined to be the area of the 
triangle in the radar chart.  For the QI model, the smaller the QI value of the radar plot i.e. the closer the 
QI value is to zero, the better the quality of the question.  To visualize the difficulty level of the test item, 
a corresponding shading of the radar plot was chosen to represent the six difficulty levels: very easy; 
easy; moderately easy; moderately difficult; difficult; very difficult.  The shading for the easy items is a 
lighter shade of grey and for the more difficult items, a darker shade of grey is used, with black 
representing very difficult items. 

Briefly,  the QI model can be used both to quantify and visualise how good or how poor the quality of a 
mathematics question is.  The following three features of the radar plots could assist us to visualise the 
quality and the difficulty of the item:  

o the shape of the radar plot; 
o the area of the radar plot; 
o the shading of the radar plot. 
 

Further discussion of the application of the QI model and radar charts will be presented in the component 
analysis of this study. 

 

Research questions 

The quality index model (QI), briefly outlined in this study, was used in order to address the following 
research question: 

Can we successfully use MCQs as an assessment format in undergraduate mathematics? 
 
In order to answer the research question, the following sub-question was formulated: 

Which of the mathematics assessment components can be successfully assessed using the PRQ 
assessment format and which of the mathematics assessment components can be successfully assessed 
using the CRQ assessment format? 
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In order to address the research sub-question, the QI model was used to identify those components that 
can be successfully assessed using the provided response format, in particular MCQs, and which can be 
better assessed in the constructed response question format.  To assist with this process, we used the 
proposed mathematics assessment component taxonomy. 

 

Research design  

Response data from 14 different mathematics tests, both CRQ and PRQ format, written between August 
2004 and June 2006 were collected.  The study was set in the context of a first-year level mathematics 
major course at the University of the Witwatersrand, Johannesburg.  In total, 207 test items were analysed 
in this study. 

The Rasch model, as a statistical tool, was used in the quantitative data analysis of this study.  It is a 
probabilistic model by which linear measures are created to be used in subsequent parametric tests 
(Rasch, 1980). 

In comparison to traditional analysis techniques, the Rasch model can be used (1) to analyse and improve 
a test instrument, and (2) to generate linear (interval strength) learner scores, thus meeting the 
assumptions of parametric statistical tests such a t-tests and ANOVA (Birnbaum, 1968). 

The Rasch model focuses on the interaction of a person with an item rather than upon the total test score.  
One of the basic assumptions of the Rasch model is that a relatively stable latent trait underlies test results 
(Boone & Rogan, 2005).   

For this reason, the model is also sometimes called the latent trait model.  A feature of traditional test 
theory is that many of the statistics depends on the assumption that the true scores of people are normally 
distributed (Andrich, 1988).  An important advantage of the Rasch latent trait model is that no 
assumptions need to be made about this distribution, and indeed, the distribution of abilities may be 
studied empirically.   It was for this reason that the Rasch model was chosen above other traditional 
statistical procedures for the quantitative research methodology of this study. 

 

Component analysis 

Using the QI model, a component analysis of selected questions, both MCQs and CRQs, in the seven 
different mathematics assessment components was conducted. 

Two such examples of the component analysis will now be illustrated. Example 1 is a CRQ item within 
the disciplinary component and Example 2 is a MCQ item within the conceptual component.  For each 
item, the question is followed by a radar plot and a table summarising the quality parameters of the test 
item, i.e. item difficulty; discrimination; confidence index; expert opinion and the final quality index.  
Each of the axes of the radar plots are labelled with the corresponding values for discrimination, 
confidence index and expert opinion.  The Quality Index (QI) is displayed alongside the radar plot.  The 
shading of the radar plot corresponds to one of the six item difficulty levels as outlined in the brief 
discussion of the QI model in this study.  The black shading of the radar plot in Example 1 indicates a 
very difficult item while the lighter grey shading of the radar plot in Example 2 indicates an item of 
moderate difficulty. The comments briefly summarise the difficulty level, the three measuring criteria and 
the overall quality of the item. All these parameters were used to define the QI model developed earlier 
by Huntley (2008). 
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Example 1: Disciplinary component 

C363b 
 

Prove, using the Intermediate Value Theorem, that there is a number exactly 1 more than its cube. 
 

CRQ, Calculus, March 2006, Q3b 

 

C363b  Comment  

Assessment Component Disciplinary  

PRQ/CRQ CRQ  

Item Difficulty 3.94 Very difficult 

Discrimination 0.295 Discriminates well 

Confidence Index 0.274 Small deviation from expected confidence level 

Expert Opinion 0.574 Large deviation from expected performance 

Quality Index 0.177 Good quality CRQ 
 

 

Example 2: Consolidation component 

A45MA4 
 

If f is an odd function and g is an even function then 

A. f g is an even function 

B. f g is an odd function 

C. f is a one-to-one function 

D. g is a one-to-one function 

PRQ, Algebra, March 2005, Tut Test A, Q4 
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A45MA4  Comment 

Assessment Component Consolidation  

PRQ/CRQ PRQ  

Item Difficulty 1.11 Moderately difficult 

Discrimination 0.275 Discriminates well 

Confidence Index 0.698 Large deviation from expected confidence level 

Expert Opinion 0.296 Small deviation from expected performance 

Quality Index 0.207 Good quality PRQ 

 

Research results and discussion 

In the presentation of the results, a comparison of test items, both PRQs and CRQs, within each 
assessment component will be made. 

Table 4 summarises the quality of the item, both PRQs and CRQs, within each assessment component.  
Within each component the number of good and poor quality items are given, both for the PRQ and CRQ 
formats.  The numbers are also given as percentages of the total number of items. 
 

Technical 

In the technical assessment component, there is a higher percentage (73%) of good PRQs than good 
CRQs (41%).  73% good PRQs compared to 41% good CRQs shows us that PRQs are more successful 
than CRQs as an assessment format in the technical component.  There is also a much higher percentage 
(73%) of good PRQs than poor PRQs (27%).  CRQs, however, are not that successful in this component, 
with the results showing 59% poor CRQs compared to 41% good CRQs.  The conclusion is that the 
technical assessment component lends itself better to PRQs than to CRQs. 

 
Disciplinary 

In this study, the disciplinary component is the assessment component with the most items (58), of which 
34 were CRQs and 24 were PRQs.  In this component it is interesting to note that the percentages of good 
PRQs (50%) and good CRQs (47%) are almost equal.  In addition, there is no difference between the 
good PRQs (50%) and the poor PRQs (50%), with very little difference between the good CRQs (47%) 
and poor CRQs (53%).  PRQs and CRQs can be considered as equally successful assessment formats in 
the disciplinary component. 
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Table 4: Component analysis – trends 

 
COMPONENT 

 

No. of 
PRQs 

No. of 
CRQs 

Total 
no. of 
items 

Good 
quality
items 

Poor 
quality 
items 

Good 
PRQs 

Good 
CRQs 

Poor 
PRQs 

Poor 
CRQs 

Technical  11 22 33 17 
(52%) 

16 
(48%) 

8 
(73%) 

9 
(41%) 

3 
(27%) 

13 
(59%) 

Disciplinary 24 34 58 28 
(48%) 

30 
(52%) 

12 
(50%) 

16 
(47%) 

12 
(50%) 

18 
(53%) 

Conceptual 26 30 56 28 
(50%) 

28 
(50%) 

14 
(54%) 

14 
(47%) 

12 
(46%) 

16 
(53%) 

Logical 7 6 13 5 
(39%) 

8 
(61%) 

1 
(14%) 

4 
(67%) 

6 
(86%) 

2 
(33%) 

Modelling 3 10 13 8 
(62%) 

5 
(38%) 

2 
(67%) 

6 
(60%) 

1 
(33%) 

4 
(40%) 

Problem solving 7 4 11 6 
(55%) 

5 
(45%) 

4 
(57%) 

2 
(50%) 

3 
(43%) 

2 
(50%) 

Consolidation 16 7 23 12 
(52%) 

11 
(48%) 

7 
(44%) 

5 
(71%) 

9 
(56%) 

2 
(29%) 

 
Conceptual 

The conceptual component also contained many items (56), with an almost equal number of PRQs and 
CRQs (26 PRQs versus 30 CRQs).  50% of the items are of good quality and 50% are of poor quality. In 
this component, there is no clear trend that PRQs are better than CRQs or vice versa.  There is a slight 
leaning towards good PRQ assessment (47% good CRQs compared to 54% good PRQs).  Therefore, in 
the conceptual assessment component, PRQs could be used as successfully as CRQs as a format of 
assessment. 

 
Logical 

In this study, it is interesting to note that the majority of questions within the logical component were of a 
poor quality mainly due to the large percentage of poor PRQs.  There are noticeably more good quality 
CRQs (67%) than good quality PRQs (14%), and noticeably more poor quality PRQs (86%) than poor 
quality CRQs (33%).  A very high percentage of the PRQs (86%) in the logical component were of a poor 
quality.  The conclusion is that the logical assessment component lends itself better to CRQs than to 
PRQs.   

 
Modelling 

In the modelling component, very few PRQs were used as assessment items in comparison to CRQs, 3 
PRQs versus 10 CRQs, probably because it is difficult to set PRQs in this component.  Despite the small 
number of PRQs, it was encouraging to note that the good PRQs (67%) far outweighed the poor PRQs 
(33%).  So in terms of quality, the PRQs were highly successful in the modelling component.  There are 
also more good CRQs (60%) than poor CRQs (40%).  It appears that although more difficult to set in the 
modelling component, PRQs could be used as successfully in the modelling assessment component as 
CRQs. 

 
Problem solving 

Although the problem solving component had the least number of items (11), it is interesting to note that 
there are more PRQs (7) than CRQs (4). There is a slightly higher percentage (57%) of good PRQs than 
good CRQs (50%).  Although the sample is too small to make definite conclusions, there is no reason to 
disregard the use of PRQs in this assessment component.  In fact, PRQs seem to be slightly more 
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successful than CRQs, and the conclusion is that PRQ assessment format can add value to the assessment 
of the problem solving component. 

 
Consolidation 

It was somewhat surprising to note that corresponding to the highest level of conceptual difficulty, the 
consolidation component displayed an unusually higher proportion of PRQs (16) to CRQs (7).  This 
supports the earlier claim that PRQs are not only appropriate for testing lower level cognitive skills 
(Haladyna, 1999; Thorndike, 1997; Williams, 2006). In the consolidation component there is a significant 
higher percentage (71%) of good CRQs than good PRQs (44%).  In addition, there is a higher percentage 
of poor PRQs (56%) than good PRQs (44%).  The high percentage of good CRQs (71%) in comparison to 
poor CRQs (29%) indicates that the consolidation assessment component lends itself better to CRQs than 
to PRQs. 

 

Conclusion 

The mathematics assessment component taxonomy, proposed by the authors in this study, is hierarchical 
in nature, with cognitive skills that need a surface approach to learning at one end, while those requiring a 
deeper approach appear at the other end of the taxonomy.  The results of this study have shown that it is 
not necessary to restrict MCQs to the lower cognitive tasks requiring a surface approach. The PRQ 
assessment format can, and does add value to the assessment of those components involving higher 
cognitive skills requiring a deeper approach to learning.  According to Smith et al. (1996), many students 
enter tertiary institutions with a surface approach to learning mathematics and this affects their results at 
university.  The results of this research study have addressed the research question of whether we can 
successfully use MCQs as an assessment format in undergraduate mathematics and the mathematics 
assessment component taxonomy was proposed to encourage a deep approach to learning.  In certain 
assessment components, MCQs are more difficult to set than CRQs, but this should not deter the assessor 
from including the PRQ assessment format within these assessment components.  As the discussion of the 
results has shown, good quality MCQs can be set within most of the assessment components in the 
taxonomy which do promote a deeper approach to learning.   

Results of this study (Huntley, 2008) show that the more cognitively demanding conceptual and problem 
solving assessment components are better for CRQs.  Traditional assessment formats such as the CRQ 
assessment format have in many cases been responsible for hindering or slowing down curriculum reform 
(Webb & Romberg, 1992).  The PRQ assessment format can successfully assess in a valid and reliable 
way, the knowledge, insights, abilities and skills related to the understanding and mastering of 
mathematics in its essential aspects.  As shown by the results of this study, MCQs can provide assistance 
to the learner in monitoring and improving his/her acquisition of mathematical insight and power, while 
also improving their confidence levels.  Furthermore, MCQs can assist the educator to improve his/her 
teaching, guidance, supervision and counselling, while also saving time.  The PRQ assessment format can 
reduce marking loads for mathematical educators, without compromising the value of instruction in any 
way.  Inclusion of the PRQ assessment format into the higher cognitive levels would bring new 
dimensions of validity into the assessment of mathematics. 

Table 5 presents a comparison of the success of MCQs and CRQs in the mathematics assessment 
components. 

As Table 5 illustrates, the enlightening conclusion is that there are only two components where CRQs 
outperform MCQs, namely the logical and consolidation assessment components.  In two other 
components, MCQs are observed to slightly outperform CRQs, namely the conceptual and problem 
solving assessment components.  The MCQs outperform the CRQs substantially in the technical and 
modelling assessment components.  In one component there is no observable difference, the disciplinary 
assessment component. 

In addressing the research question formulated as “Can we successfully use MCQs as an assessment 
format in undergraduate mathematics?”, this paper has addressed the sub-question formulated as “Which 
of the mathematics assessment components can be successfully assessed using the PRQ assessment  
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Table 5: Comparison of the success of MCQs and CRQs in the mathematics assessment components 

Mathematics assessment Component Comparison of success 

Technical MCQs can be used successfully 

Disciplinary No difference 

Conceptual MCQs can be used successfully 

Logical CRQs more successful 

Modelling MCQs can be used successfully 

Problem solving MCQs can be used successfully 

Consolidation CRQs more successful 

 

format and which of the mathematics assessment components can be successfully assessed using the CRQ 
assessment format?”.  To address the sub-question, the mathematics assessment component taxonomy 
was proposed. 

In terms of the mathematics assessment components, it was noted that certain assessment components 
lend themselves better to MCQs than to CRQs.  In particular, the PRQ format proved to be more 
successful in the technical, conceptual, modelling and problem solving assessment components, with very 
little difference in the disciplinary component, thus representing a range of assessment levels from the 
lower cognitive levels to the higher cognitive levels.  Although CRQs proved to be more successful than 
MCQs in the logical and consolidation assessment components, MCQs can add value to the assessment of 
these higher cognitive component levels.  Greater care is needed when setting MCQs in the logical and 
consolidation assessment components.  The inclusion of the PRQ format in all seven assessment 
components can reduce marking loads for mathematics educators, without compromising the validity of 
the assessment.  The PRQ assessment format can successfully assess in a valid and reliable way. The 
results have shown that MCQs can improve students’ acquisition of mathematical insight and knowledge.  
The PRQ assessment format (including MCQs) can be used as successfully as the CRQ assessment 
format to assess undergraduate mathematics. 
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