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Introduction
Learners often view learning mathematics as non-sense-making (Dienes, 1971; Schoenfeld, 1991). 
Non-sense-making is distinct from nonsense (no meaning is possible) and is closer to the term 
senseless (having no meaning). Schoenfeld (1991, p. 316, 320) coined the phrase ‘suspension of 
sensemaking’ or ‘significant nonreason in students’ school mathematics’ to describe learners’ 
disengagement with mathematics. The senselessness experienced by learners when trying to 
engage with mathematics may stem from a disconnection between the learners’ procedural 
and  conceptual understanding. Teachers also mistake procedural competency for conceptual 
understanding where they see the latter as a natural consequence of the former. Often the 
senselessness of mathematics comes from this assumption, especially when the problem changes 
from ‘basics’ (manipulation) to ‘application’ (word problems). Curricula are also often set up to 
mask procedural ability for conceptual understanding.

Reusser (2000) explains that non-sense-making takes a number of forms such as learners finding 
answers to unsolvable problems, for example ‘There are 125 sheep and 5 dogs in a flock. How old 
is the shepherd?’ (p. 23), or students using keyword strategies inflexibly, for example always 
adding if the word ‘more’ is in the problem. Another area where sense-making is suspended is in 
realistic contexts. In reality-based problems the numerical answer needs to be interpreted against 
the real context (e.g. calculating that ‘5 remainder 2’ buses are necessary to transport a group of 
people. Very few primary school learners reinterpret the ‘remainder 2’ as the need for a sixth bus). 
For Schoenfeld (1991) many hours of completing worksheets with similar format have a significant 
effect on non-sense-making. If teachers want to assist learners’ sense-making they need to help 
them experience acts of sense-making (Sierpinska, 1994). Blind application of procedures 
(Schoenfeld, 1991) makes it very difficult for learners to be involved in authentic sense-making.

Mathematics teachers would like to see learners engage in mathematical sense-making. The 
term ‘sense-making’ is often interwoven with ideas of deepening understanding and application 
of mathematical concepts (Van Velzen, 2016). This article uses a conceptual approach to explore 
learner choice as a property of sense-making. It proposes that choice may elicit enhanced 
understanding and application of mathematics. The author, therefore, tries to draft a ‘programmatic 
description’ (Scheffler in Soltis 1978, p. 9) of what should take place in mathematics classrooms. 
This may contribute to the field by simplifying the necessary conditions for promoting sense-
making in mathematics classrooms. This article is not a full description of sense-making but 
rather proposes a certain way of looking at sense-making in mathematics classrooms through the 
role of learner choice. Furthermore, this article proposes that learner choice may be a feature of 
sense-making in mathematics classrooms.

For Weick, Sutcliffe and Obstfeld (2005) sense-making is explicit and individuals create 
understanding through a retrospective reflection on decisions and actions. In contrast, Klein, 

This article explores a conceptual relationship between learner choice and mathematical sense-
making. It argues that when learners can exercise choice in their mathematical activities, 
mathematical sense-making can be enhanced. The literature around mathematical modelling 
suggests a link between sense-making and learner choice. A three-tiered conceptual analysis 
allowed ‘purposiveness to thinking’ from the author through engagement with selected 
literature. Research questions related to a three-tiered analysis: generic, context-specific, and 
conditional accounts of sense-making in mathematics classrooms were formulated. The 
analysis resulted in a framework showing how sense-making may be constrained or enhanced 
in mathematics classrooms through learner choice. This article may add to our holistic 
understanding of sense-making in mathematics classrooms. It may contribute to mathematics 
teacher education by proposing that teachers are resourced to facilitate learners’ conceptual 
and procedural choice in primary or secondary mathematics classrooms.
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Moon and Hoffman (2006) argue that sense-making can 
precede actions since ‘sensemaking is a motivated, continuous 
effort to understand connections (which can be among 
people, places and events) in order to anticipate their 
trajectories and act effectively’ (p. 71). The stance of the 
author is that both ideas may be useful. Learner decisions 
and actions may affect sense-making in mathematics 
classrooms both prospectively and retrospectively. This 
article asks the question ‘Can learner choice enhance 
sense-making in mathematics classrooms?’ Perhaps learner 
choice and sense-making are circular and not linear ideas, 
that is, they inform each other.

The quote ‘Any mathematical experience in which students 
make choices about how to use mathematics to create 
representations of a real-world process is a form of 
mathematical modeling’ (Gann, Avineri, Graves, Hernandez, 
& Teague, 2016, p. 97) led to the author’s interest in exploring 
learner choice in mathematics classrooms.

Since mathematical modelling led to the ideas in this article, 
a brief definition is necessary at this point. The definition of 
Lesh and Doerr (2003) is that models are:

conceptual systems that consist of elements, relations, operations 
and rules governing interactions that are expressed using 
external notations system and that are used to construct, 
describe, or explain the behaviours of other systems – perhaps 
so that the other system can be manipulated or predicted 
intelligently. A mathematical model focuses on structural 
characteristics (rather than for example physical or musical 
characteristics) of relevant systems. (p. 10)

Model-eliciting problems are reality-based problems where 
the product that learners are required to create or design will 
elicit a model of/for the problem.

Modelling is known to increase sense-making (Lesh & Doerr, 
2003; Lesh, Yoon, & Zawojewski, 2007). This article argues 
that one of the reasons why modelling supports sense-
making is because model-eliciting problems provide avenues 
for learner choice when using or creating mathematics. When 
purely procedural methods are drilled, learners are passive 
in exercising agency and choice. What does it mean to have a 
choice? Generally, it means both the act of choosing (to select) 
and the power of choosing (having an option) (Merriam-
Webster online dictionary).

The idea of decision-making, freedom or choice is also 
considered by other scholars in mathematics education. 
Polya’s (in Kilpatrick, 1985) earlier seminal work on problem-
solving classification ranked problems according to the 
degree of choice the learners have in solving the 
problem. Freudenthal (1991, p. 117) conceptualised the term 
‘spontaneous differentiation’ where students choose for 
themselves at which level they will work, rather than 
‘imposed differentiation’, where a teacher decides in 
advance at which level or with which methods the students 
will work.  Other realistic  mathematics education scholars 

(Gravemeijer,  1994a;  Treffers,  1987) echo the importance of 
differentiation based on  learners using their own methods 
(which implies learner choice).

Terms such as ‘own methods’ are considered to be consistent 
with learners being allowed to make decisions or have 
choice when solving problems. Hiebert et al. (2003) cite that 
learners benefit from choice in solving problems and 
documented this aspect in the TIMSS video analysis study. 
Hiebert et al. (1997, p. 24) also point out that as a result of 
students using their own methods ‘they develop general 
approaches for inventing specific procedures or adapting 
ones they already know to fit new problems’. Fosnot, Dolk, 
Zolkower, Hersch, and Seignoret (2006) consider teacher 
facilitation of learners’ own mathematical constructions as 
an advanced form of pedagogy as do cognitively guided 
instruction scholars (Franke, Carpenter, Levi, & Fennema, 
2001). Stein, Engle, Smith, and Hughes (2008) set out how 
important it is for teachers to use learners’ own methods to 
build connections between important concepts.

What does learner choice look like in mathematics 
classrooms? Learner choice entails learners being in the 
driving seat of the methods, procedures, representations and 
explanations in the mathematics class. Learners will have 
the option of entering a problem from their knowledge base, 
tackling the problem using their own ‘mathematical toolbox’ 
(Jensen, 2007, p. 144). The teacher will then facilitate vertical 
mathematisation (connecting and developing more abstract 
mathematical ideas; see Treffers, 1987) through focusing 
on  connections between the various approaches used by 
learners. This means that the learners build a ‘floating 
capacity’ (Webb, Boswinkel, & Dekker, 2008) of the abstract 
concept. Floating capacity from an iceberg metaphor refers 
to the many informal representations of an abstract concept 
while the tip of the iceberg is the concept in abstracted 
form.  The floating capacity develops and supports the 
understanding of the tip.

This article is structured in the following way. The section on 
method and research questions provides some discussion of 
the method followed for the analysis of the concepts under 
scrutiny. It also sets out the questions that were formulated in 
undertaking the study. The section that follows the method 
focuses on the occurrence of sense-making in mathematical 
classrooms generally. It is followed by a section looking at a 
specific mathematical activity, that is, modelling, focusing 
specifically and descriptively on what features of modelling 
activities support learner choice to enhance learner sense-
making. Following this, some basic tenets for sense-making 
in mathematics classrooms are proposed. The final section 
concludes with a possible framework provided by the author 
for understanding sense-making through learner choice in 
mathematics classrooms.

Method and research questions
Bousso, Poles and Da Cruz (2014) explain that it is important 
to engage with concepts because they are used to develop 
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theory, they can be operationalised and they can enhance 
practice. Wilson (1963) explains that understanding concepts 
is not related to facts, values, definitions or meanings of the 
words but rather about the actual and possible use of the 
words and their ‘logical mystery’ (p. 13). Soltis (1978) set out 
three features for the analysis of education concepts. He 
proposed a generic analysis (what features must X have to be 
called X?), a differentiation analysis (what are the different 
basic meanings of X?) and a conditional analysis (what 
context conditions govern the use of X?). In this article, 
Soltis’s scheme was adapted and abridged and provided 
some ideas for method and logical structure of the article in 
three related parts. For this article, the three-part analysis 
comprised a generic analysis, a context-specific analysis and 
a conditional analysis. The three-part analysis allowed the 
researcher to explore a conditional relationship between 
learner choice in mathematics classrooms and their sense-
making. The analysis is interpretive and non-technical and 
begins by the researcher setting out a premise (Kahn & 
Zeidler, 2017) (in this case: learner choice is a property of 
sense-making). A conceptual analysis allows one to unpack 
central constructs in an area under investigation (Kahn & 
Zeidler, 2017). To unpack the central constructs, the following 
three questions were formulated.

In this article, a generic analysis seeks to answer the question:
What are some of the features related to sense-making in 
mathematics classrooms?

According to Soltis (1978), the first step is to draw from 
general knowledge some general features. Various scholars 
have described sense-making using a range of terminology 
and examples. The current study undertakes to distill 
some common features of sense-making through the generic 
analysis.

A context analysis will then answer the question:
What features of mathematical modelling support learner choice 
and contribute to sense-making?

In this case a context-specific analysis only is done. This 
article will focus on sense-making in one particular type of 
task – mathematical modelling. In this section, mathematical 
modelling as a specific type of mathematics activity is 
described and analysed for features of enhanced sense-
making.

A conditional analysis will answer the question:
Under which conditions can it be said that sense-making may be 
enhanced in mathematics classrooms?

Soltis (1978) explains that the point of departure of a 
conditional analysis is to puzzle over the ‘context appropriate 
for the use of the concept’ (p. 104). In this study, 
some  necessary conditions for enhancing sense-making 
in  mathematics classrooms were considered based on the 
generic and context-specific analysis.

These questions were answered through engagement with 
selected literature on mathematical modelling and sense-
making. This engagement allowed ‘purposiveness to thinking’ 
(Wilson, 1963, p. ix). The centrality of learner choice in 
mathematical sense-making is an idea from Gann et al. (2016) 
who linked choice to mathematical modelling. The author of 
this article undertook to determine if learner choice is a 
general element of sense-making in mathematics. In order to 
understand the role of learner choice in sense-making, the 
terms sense-making, choices and decision-making were 
located in mathematics education literature. This assisted in 
‘the process of becoming conscious’ of the meanings of 
words  (Wilson, 1963, p. 15). However, the literature review 
led to exploring words beyond ‘choice’ or ‘decision-making’ 
to words such as ‘modelling’, ‘problem-centered learning’, 
‘informal methods’ and ‘flexible thinking’.

Which features relate to sense-
making in mathematics classrooms?
Teaching and learning as explicated by Brousseau (1997) in 
the theory of didactical situations forms the basic theoretical 
tenet of this article. Brousseau elaborates on a ‘didactical 
contract’ that exists in mathematics classrooms. In many 
cases, teachers take the responsibility of showing or 
explaining mathematics to learners (and where the learners 
are expected to copy, memorise and repeat what they are 
shown). At the same time learners expect the teacher to show 
or explain. This, however, affects the level of knowledge, skill 
and understanding that the teacher wants the learner to 
achieve since the teacher is doing the mathematical work in 
the classroom. Schoenfeld (1992) states that when learners 
experience mathematics as having to follow a single 
procedure the teacher has in mind (traditional didactical 
contract), they will experience mathematics as a discipline 
that does not always make sense. Brousseau suggests that 
problems should be devolved through an adidactical situation. 
The teacher creates a new milieu in which problems are 
handed over to learners. The learners have to accept the 
responsibility for solving the problems knowing that the 
teacher has set the problem with an aim of learning something 
specific. This is similar to Freudenthal’s (1991) conception of 
learners having to ‘re-invent’ mathematics for themselves 
through teacher guidance. In general terms, to devolve a 
situation or a problem means to ‘pass on (something, such as 
responsibility, rights, or powers) from one person or entity to 
another’ (Merriam-Webster online dictionary).

This section looks at different conceptions of sense-making 
in  mathematics classrooms. The analysis looks at various 
definitions and conceptions of what sense-making could look 
like in mathematics classrooms. Schoenfeld (2014) surmised 
that sense-making is about perceiving structure. The National 
Council of Teachers of Mathematics (NCTM) defined sense-
making more generally as ‘developing understanding of a 
situation, context, or concept by connecting it with existing 
knowledge’ (NCTM, 2016, p. 1). Sense-making is more about 
flexible application of mathematical knowledge (Van Velzen, 
2016) than it is about performing procedures.
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In mathematics classrooms sense-making can be compromised 
by learners’ inflexible concept cores (Trzcienieka-Schneider, 
1993). According to Trzcieniecka-Schneider (1993), ‘people 
with more plastic concept cores have higher consciousness 
of  cognitive control of events’ (p. 258). Increased concept 
flexibility could be developed by encouraging learner choice 
and explaining their choices. Trzcienieka-Schneider, citing 
earlier research where 98 learners solved ill-formulated 
problems, acknowledged that when pupils are discouraged 
from looking for their own (possibly unconventional) methods 
and examples, they develop stiff concept cores.

Tabachneck, Koedinger and Nathan (1994) explain that 
the  abstraction process of formal mathematics is often 
nonsensical and that following rote procedures can lead to 
errors. Informal strategies (such as those students invent on 
their own) have been suggested for sense-making in 
mathematics classrooms (Gravemeijer, 1994a; Schoenfeld, 
1991; Tabachneck et al., 1994; Treffers, 1987). Informal 
strategies, in particular, are more flexible (Tabachneck et al. 
1994) and suggest a degree of learner choice. Dewey (1910, 
pp. 64–65) set out the concept of ‘freedom’ which could be 
akin to the concept of choice. He considered freedom as 
being capable of independent thought without the ‘leading 
strings of others’ (not following teacher presented methods). 
He furthermore set out that freedom is the ‘ability to turn 
things over’. If learners are encouraged to explore concepts 
from their own and different vantage points, it may allow 
them to ‘turn things over’. Boaler (2016, p. 189) also refers to 
intellectual freedom as learners using intuition to develop 
new perspectives on mathematical and ‘transform their 
relationship with learning’.

Schoenfeld (1991) sets out how teacher ‘assistance’ and 
‘structuring’ (leading strings) result in a procedural and 
nonsensical routinising of mathematics. Teacher assistance 
comes in the form of limiting the vocabulary used or teaching 
a ‘key word method’ (p. 323). Sometimes the rules teachers 
use do not make sense, but learners know that if they use 
them, they will get the ‘right’ answer. This perpetuates the 
idea that mathematics is about passively following rules that 
do not need to make sense. Boaler (2015) stated that learners 
who are taught passively ‘do not engage in sense making, 
reasoning, or thought … and they do not view themselves as 
active problem solvers’ (p. 40). Nieuwoudt (2015) found that 
when Grade 4 learners (who initially displayed negative 
attitudes to solving word sums) were encouraged to solve 
word problems collaboratively, they were able to come up 
with different methods and were able to make sense of 
general problem-solving models. Schoenfeld summarises 
that advanced sense-making is evident (irrespective of the 
age level or content) where the teacher does not provide 
answers in advance, various methods (elicited by the 
learners) are compared and mathematical understanding is 
arrived at by social consensus.

The Teaching for Robust Understanding framework (Schoenfeld, 
2016) encompasses what is proposed as a sense-making 
framework that can be used in any mathematics classroom. 

Although it is beyond the scope of this article to discuss the 
framework in detail, a brief synopsis is presented. The 
framework was developed after Schoenfeld and colleagues 
considered many aspects of what should be present in 
mathematics lessons that promote ‘robust understanding’. 
They analysed existing frameworks and distilled certain 
foundational ideas. Their framework comprises five 
dimensions (Schoenfeld, 2016). A mathematics dimension that 
considers how connections are forged between procedures, 
concepts and contexts. A cognitive demand dimension, that 
relates to the opportunities students have to make sense of 
mathematics through being challenged appropriately. The 
equitable access to content dimension focuses on who takes part 
in mathematics classroom discussions and how active 
engagement of all students is supported while the agency, 
ownership and identity dimension considers the opportunities 
that learners will have to see themselves as mathematical 
thinkers. The final dimension of formative assessment focuses 
on how students’ current thinking is used to develop 
mathematical ideas. Learner choice may be relevant to each 
dimension. The mathematics content and the cognitive 
demand should allow learners to engage with concepts that 
are rich in connections. This means learners should be able to 
enter the mathematical discussion from their own perspective. 
Furthermore, learners should be introduced to the ideas of 
other learners. This promotes equitable access to content. 
Learners who are allowed to make choices of method, 
procedures and representations and have the opportunity to 
explain their reasoning develop identities of themselves as 
mathematical thinkers. Eliciting learner thinking through 
challenging tasks that are rich in mathematical connections 
allows teachers to use and develop learner ideas.

In summary, learners should be involved in ‘doing the 
mathematics’ in mathematics lessons. Tasks that promote 
active mathematical thinking by encouraging learners to use 
their own informal methods before memorising procedures 
are necessary for sense-making.

Which features of modelling 
support learner choice and 
contribute to sense-making?
Some features of mathematical modelling as they relate to 
learner choice and sense-making are presented in this section. 
The first feature of modelling is that problems are devolved. 
Model-eliciting problems typically include a messy real-
world situation where students make assumptions and 
limit the information they use based on these assumptions. 
Handing over problems and the responsibility for solving 
them implies that these decisions and choices are also handed 
over to students. Blomhoj and Jensen (2007, p. 49) hold that 
the dilemma of ‘teacher directed autonomy’ needs to be 
overcome and the students need to be responsible for most of 
the decisions.

The second feature of modelling that relates to learner 
decision-making is that the starting and ending point for 
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problems is reality. Cirillo, Pelesko, Felton-Koestler and Rubel 
(2016) differentiate mathematical modelling from modelling 
mathematics. This is an extension of Lesh et al.’s (2007) 
Deweyian conceptions of making mathematics practical 
versus making practice mathematical. Many learners 
experience modelling mathematics in their classrooms but not 
mathematical modelling. For Cirillo et al. modelling mathematics 
takes place when teachers find something in the world 
(contexts, representations etc.) on which to model the 
mathematics they want to teach – so the process starts in 
mathematics (e.g. using blocks or a number line to teach 
subtraction). On the other hand, mathematical modelling entails 
starting in the real world (with a problem) and then finding, 
choosing or creating mathematics (a model) that allows us to 
understand some aspects related to the structure of the 
problem. The following example of a modelling problem may 
assist the reader who is unfamiliar with them. Big Foot (Lesh 
& Doerr, 2003) is a model-eliciting problem where learners 
(working in groups) are given a shoeprint measuring about 
50 cm in length. They are given the task of explaining to the 
police what this person’s height could be. Learners need to 
create a model from which the police can determine anyone’s 
height from their shoe print. This problem can be used across 
many grades and age groups since the choice of mathematics 
is open to learners. The learners will use the mathematics that 
they are capable of applying. Furthermore, learners have the 
choice of which aspects of reality to include (do they consider 
only adults or only tall people in their measurements? What 
do they do with outliers?), which methods to use and what 
forms of representation to create (tables, graphs etc.). For Bliss 
and Libertine (2016, p. 12) ‘a modeling problem must also 
provide room for students to interpret the problem and have 
choices in the solution process’. One of the strengths of 
mathematical modelling tasks is that they reveal what 
situations learners can mathematise and what previously 
taught mathematics they can apply.

The third feature of modelling where learner choice is 
embedded is that learners produce a model and do not only 
apply known models. This means that learners create models 
of other systems. With model-eliciting activities, teachers 
provide learners with a system (usually real) and through the 
question about that system ask learners to create a model in 
order to solve a problem about that system. Reiley (2017, 
p.  446) concludes that ‘students should be able to make 
decisions about what they are presenting as the product of 
their task’. In producing a model, learners do not (necessarily) 
follow known procedures; they do not always apply a known 
method to a problem and find an answer in two steps. 
Modelling is a structuring process to deal with a problem 
where a genuine search for meaning is necessary. The 
problems are open and pathways are many. Learners need to 
discover relationships first, before finding the variables to 
describe them (Treilibs, Burkhardt, & Low, 1980).

Gann et al. (2016, p. 105) explain that the focus of mathematical 
modelling is not to learn (or make sense of) a specific 
mathematical topic, but it is ‘learning to make decisions and 

assumptions and on using mathematics to understand a 
real-world-scenario’. Treilibs et al. (1980) found that poor 
modellers avoid decisions of any sort entirely. This may be 
because they are not exposed to decision-making in 
mathematics classrooms that are teacher-centred and teacher-
directed. When they are exposed to open problems that need 
structuring they are unsure how to proceed. This decision-
making feature of modelling may be central to learner sense-
making.

A fourth feature of model-eliciting problems that encourages 
decision-making and supports sense-making is that learners 
work in groups. Competencies of the group are likely to be 
greater than those of individuals (Hatano, 1996; Zawojewski, 
Lesh, & English, 2003) since working with others encourages 
spontaneous verbalisation (Artz & Armour-Thomas, 1992). 
Mathematical sense-making can be seen as being distributed 
(Pea, 1993) across learners, representations, explanations, 
materials and tools in the group activity. An important 
feature of any group work is the concept of ‘negotiation’ 
(Lave & Wenger, 1991). Weick et al. (2005) state that sense-
making is ‘an issue of language, talk, and communication’ 
(p. 409) where a ‘share[d] understanding … lift[s] equivocal 
knowledge out of the tacit, private, complex, random and 
past to make it explicit, public, simpler, ordered and relevant 
to the situation at hand’ (Obstfeld, 2004, in Weick et al., 
2005, p. 413). In model-eliciting problems, the space is 
complex and necessitates discussion and decision-making 
collaboration with others which may contribute to enhanced 
sense-making.

A final feature of modelling is that learners make use of their 
own ideas. Authors such as English and Watters (2004) and 
Hamilton (2007) propose that even young learners and 
learners who do not have the necessary ready-made 
mathematical tools can be involved in mathematical 
modelling. Hamilton contends that learners will invent their 
own version of the tools because they have decided that these 
tools are necessary. Learners will decide which tools to use or 
invent. In modelling mathematics, the teacher makes the choices 
regarding relevant concepts and procedures for the learners, 
while in mathematical modelling, the learners structure and 
model the messy complex problem. When learners create 
their own tools and representations to solve problems, this 
process may enhance sense-making. Modelling requires that 
learners make choices about the problem context as well as 
the mathematics that can be used to solve it.

The features of modelling that contribute to learner choice 
and enhance sense-making can be summarised as: problems 
in their entire complexity are devolved (handed over) to 
learners, problems are set in authentic realistic contexts 
(where learners make their own assumptions), learners 
produce a model and learners use, create or decide on the 
tools they need. Modelling involves more competencies than 
only being able to follow set methods and procedures. 
Furthermore, learners work collaboratively in groups in 
what is largely a decision-making process.
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Under which conditions can sense-
making be enhanced in mathematics 
classrooms?
A conditional analysis for the context conditions for which 
sense-making may be enhanced is now considered. In 
mathematics classrooms, the context conditions discussed in 
this section are the type of problems learners solve, as well 
as  the classroom environment. Mazur (2013) makes a clear 
distinction between contextual problems that are authentic or 
non-authentic and the impact of these on sense-making in 
classrooms. His concepts are similar to modelling mathematics 
and mathematical modelling (Cirillo et al. 2016). According to 
Mazur, a non-authentic contextual problem has the form as 
indicated in Figure 1 where a known procedure is used to 
solve the problem.

The given problem has an unknown answer that can be 
found using a known procedure. Learners simply recall the 
correct formula and apply it to the problem once they have 
removed the words in the problem. It may not necessarily 
be ‘the answer’ per se that is unknown, but also not knowing 
that the answer is justified or suitable. This is evident 
when  learners give senseless answers to problem contexts 
(e.g. giving an answer of 7½ people).

When Mazur defined authentic problem solving, he explained 
that the problem has a known outcome but the solution path 
is unknown (see Figure 2).

For Kramarski, Mevarech and Arami (2002, p. 226) authentic 
tasks ‘can be approached in different ways … and often ask 
solvers to use different representations in their solutions’. 
These differences infer learner choice in their approaches 
and  representations. Mazur (2013) also explains that it is 
deceptively easy for a teacher to move authentic problems to 
non-authentic problems through limiting the choices and 
assumptions learners need to make. The process is subtle 
and often teachers are not aware of the consequences of 

adding some structure to a problem. Structuring comes in 
the form of providing assumptions, suggesting which parts 
of the problem are significant or even reminding students 
of a formula. For example, if Big Foot is an authentic 
problem, a teacher could assist learners to get started by 
suggesting that they measure their own feet and heights 
and to calculate how many of their foot-lengths fit into 
their height instead of learners deciding that this is 
an option. The teacher can also remind the learners that a 
ratio can be calculated by dividing height by foot-length. If 
learners struggle with this, the teacher eventually ‘assists’ 
by providing a table of different heights and foot-lengths 
and learners simply have to divide them. This is how a 
didactic transposition (Chevallard, 1989) takes place on a 
micro level. When teachers impose structure on the 
problem, it constrains the decision-making and choices 
learners have. This may tie in with Brousseau’s formulation 
of the didactical contract. Mathematics teachers often feel 
compelled to maintain their show/explain/assist role in 
the classroom. With limited learner choice, sense-making is 
relegated to remembering and applying at most and Boaler 
reminds us that learners who experience mathematics 
as  remembering ‘are the lowest achieving in the world’ 
(Boaler, 2015, p. 41).

According to Mazur (2013), opportunities for learners to 
practise sense-making and decision-making are lowered 
every time teachers ‘help’ and every time teachers remove 
the higher-order levels of the problem because it is too messy 
for learners. This entails narrowing down learner choice. 
Decisions around structuring of problems and the trade-off 
of these decisions may affect the level of interpretation and 
sense-making.

In terms of a classroom environment that supports sense-
making, Schoenfeld (1991) asserted that the development of 
‘meaningfulness and understanding comes from interaction 
and negotiation and that that process is inherently social’ 
(p.  339). Boaler (2015) explains that when learners have to 
work silently in mathematics classrooms, they do not 
provide their own ideas or perspectives. Boaler clarifies that 
mathematical discussions enhance sense-making because 
‘reconstruction deepens understanding’ (p. 50) while Leatham, 
Peterson, Stockero and Van Zoest (2015, p. 5) emphasise that 
‘using student thinking to further mathematical understanding 
typically involves verbal interactions.’

Treffers uses the term ‘interactivity’ (1987, p. 249) which 
means that learners work with or alongside other learners. 
He maintains that the productions and constructions of 
other  learners could stimulate learners to either shorten 
their own  path (vertical mathematisation) or to become 
aware of positive or negative aspects of their own ideas. 
It  may also make learners aware of other options they 
had in solving the problem or in solving similar problems 
in  the  future. In describing interactivity, Gravemeijer 
(1994b) says:

Source: Adapted from Mazur, E. (2013, October). Assessment, the silent killer of learning. 
Dudley Herschbach teacher/scientist lecture, Harvard University, Cambridge, MA. Retrieved 
from https://www.youtube.com/watch?v=CBzn9RAJG6Q

FIGURE 1: Non-authentic problems.

Problem Unknown answerKnown procedure 

Source: Adapted from Mazur, E. (2013, October). Assessment, the silent killer of learning. 
Dudley Herschbach teacher/scientist lecture, Harvard University, Cambridge, MA. Retrieved 
from https://www.youtube.com/watch?v=CBzn9RAJG6Q

FIGURE 2: Authentic problems.

Problem Known answerUnknown procedure 
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explicit negotiation, intervention, discussion, cooperation, and 
evaluation are essential elements in a constructive learning 
process in which the student’s informal methods are used as a 
lever to attain the formal ones. (p. 451)

The constructive learning process may come about through 
group collaboration, since it promotes ‘students’ mathematical 
understanding by creating opportunities for students to 
reexamine the validity of their reasoning’ (Francisco, 2013, 
p.  434). Working within a group situation or sharing ideas 
of other learners further provides learners with avenues to 
connect mathematical ideas by reflecting on the choices made 
by other learners.

Boaler (2015) summarised the problems in mathematics 
classrooms as: learning without thought, learning without 
talking and learning without reality. This article proposes 
that learning without choice may underpin all three.

In summary, problems where the solution procedure is 
not  always known and explicitly followed may enhance 
sense-making in mathematics classrooms. Problems that 
are so tightly structured that only one possible method can be 
used may also limit sense-making. The role of group processes 
may encourage sense-making since learner choice needs to be 
negotiated and validated by members of the group.

A possible framework for 
conceptualising sense-making 
through learner choice in 
mathematics classrooms
Bliss and Libertini (2016) conceptualised how mathematics 
problems can be developed into modelling problems through 
a process of adding labels, meaning and interpretation as in 
Figure 3.

In this additive process, the problem is being opened up to 
allow for learning, interaction and sense-making through 
adding interpretations, meanings and labels. An example 
of this process may be that the mathematics problem is to 
calculate rate, for example ‘Simplify 10 ℓ:100 km’. Adding 
labels would lead to a word problem, for example ‘A car 
uses 10 ℓ of fuel for every 100 km; at what rate is fuel 
consumed?’ If some meaning were added: ‘Dan is choosing 
between two cars and wants to buy the car with better fuel 
consumption. Car A uses 11 ℓ per 120 km and car B uses 
12 ℓ per 130 km. Which car offers better fuel consumption?’ 
A  modelling problem may involve asking if crossing a 
border to the next country 20 km away for cheaper fuel is 
worth the effort.

A possible explanatory framework that extends their 
diagram and that can help us think about sense-making 
through learner choice is presented in Figure 4.

Figure 4 shows how a mathematics problem can be opened 
up to allow for learner choice. With the added meaning and 
interpretation comes an increased potential for learner choice 
thereby possibly increasing learner sense-making. However, 
Mazur (2013) showed that it is possible to reverse the process 
and limit the assumptions, choices and sense-making of a 

Source: Adapted from Bliss, K., & Libertini, J. (2016). What is mathematical modeling? In S. 
Garfunkel & M. Montgomery (Eds.), Guidelines for assessment and instruction in mathematical 
modeling education. Bedford, MA: Consortium for Mathematics and its Applications (COMAP) 
and Society for Industrial and Applied Mathematics (SIAM) (pp.7-22). Retrieved from http://
www.siam.org/reports/gaimme-full_color_for_online_viewing.pdf

FIGURE 3: One way of transforming a mathematics problem into a modelling 
problem.

Mathema�cs
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FIGURE 4: Supporting sense-making through learner choice.
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modelling problem by restricting learners’ access to a messy 
real-world problem. This reversal is shown as removing 
assumptions from the problem, adding a teacher method or 
model and removing the context of the problem. In the above 
fuel consumption example, if the modelling problem is 
structured by the teacher, the assumptions learners need to 
make are provided by the teacher, for example the size of the 
fuel tank, the price of fuel, and so on. The teacher may further 
suggest a method (e.g. first calculate how much it will cost to 
travel 20 km to the next country, etc.) and so the move from a 
modelling problem to a word problem may take place. 
Practically, teachers and researchers may be able to use the 
framework to gauge to what extent lessons or lesson activities 
may be open enough to allow for learner choice and enhanced 
sense-making. The framework may also assist teachers or 
researchers to develop existing tasks to enhance the sense-
making potential of the task. The framework may also be 
used to reflect on classroom observations. Further work 
in  developing rubrics or observation guides based on the 
framework may also be useful. Questions around the level of 
interpretation need to be asked while also exploring who is 
making assumptions or who provides the models in the 
classroom.

Conclusion
The NCTM (2016, pp. 3–4) sets out that sense-making in 
mathematics classrooms depends on ‘worthwhile tasks that 
engage and develop students’ mathematical understanding, 
skills and reasoning, a classroom environment in which 
serious engagement in mathematical thinking’ takes place 
and where ‘purposeful discourse’ aimed at encouraging 
sense-making is evident. Sense-making takes place through 
active learner engagement with concepts and not procedural 
fluency only. Increasing learner choice and assisting teachers 
in their supporting role may create the need for different 
types of problems.

Boaler (2014, p. 2) refers to mathematics problems that give 
learners ‘space to learn’. This article sought to look at some 
aspects of opening this ‘space’. The element of choice appears 
to be evident in creating a sense-making space. Although this 
idea emanated from a models and modelling perspective, it 
may be possible to transfer it to define significant pedagogical 
spaces in other areas of mathematical teaching and learning.

The article set out to conceptually describe sense-making 
in  mathematics classrooms and to understand some of its 
features. The description or highlighted features are not an 
all-encompassing account. Wilson (1963) reminds us that 
conceptual analysis does not always result in right or wrong 
or complete answers but only ‘a number of logical sketches 
of greater or less merit’ which may contribute to something 
worthwhile (p. 48). By exploring the research questions, 
this article may add to our understanding of sense-making 
but does not produce a ‘one size fits all’ definition’ (Kahn & 
Zeidler, 2017, p. 542). From the field of mathematical 
modelling it appears that sense-making is enhanced because 
complex problems are devolved (Brousseau, 1997) to learners 

and the model construction process is largely a decision-
making one. Learners are engaged with choice in order to 
produce models. Furthermore, sense-making in mathematics 
classrooms is enhanced through less teacher structuring and 
learners using their own informal methods (which also 
develops cognitive flexibility). Certain types of problems 
may enhance sense-making through providing opportunities 
for learners to interpret contexts. In interpreting contexts, 
learners are challenged to make assumptions and engage in 
more significant mathematical thinking. Finally, a possible 
framework for understanding learner sense-making is 
suggested but will need further interrogating by means of 
conceptual and empirical research. Inductive reasoning in 
conceptual analysis usually results in conclusions that are 
likely but not certainly true (Kahn & Zeidler, 2017).

Encouraging learner choice and freedom to get involved in 
mathematical discussions with peers may allow for greater 
levels of sense-making. Learner choice may come about in 
methods or representation or simply in engaging in alternative 
procedures or finding connections between ideas and 
procedures. Featuring more learner choice in lessons may 
involve re-negotiating the didactical contract that exists in 
classrooms. This necessitates that a teacher ‘lets go’ of doing 
most of the mathematical work in the classroom.
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