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Introduction
The mathematical topic of quadratic inequalities plays a significant role in the solution of some 
real-life optimisation problems as given in the pre-post-test examples of this study. This topic, 
however, requires prior knowledge of other mathematical topics such as algebra, linear 
inequalities, quadratic equations, quadratic functions and geometry (Bicer, Capraro, & Capraro, 
2014; El-Khateeb, 2016; Halmaghi, 2011). El-Khateeb (2016) adds that solving inequalities demands 
basic knowledge of properties and applications of functions that include domain, range and 
intervals (increasing or decreasing). This implies that the teaching and learning of quadratic 
inequalities should be underpinned by a strong mathematical background of foundational 
concepts, algebraic manipulation skills, related contexts of application and geometric visualisation. 
It is important for learners to understand the relationship of comparison and to develop the 
competencies of explaining the inequality relations, using terms such as ‘greater than’, ‘less than’, 
‘greater than or equal to’, ‘less than or equal to’, the associated symbolisations (>, <, ≥, ≤) and how 
all these differ from the relationship of equality (=). 

Yin (2005) attests that a sound knowledge of inequalities is critical in the study of engineering, 
astronomy and science. Civil engineers may, for example, want to design artefacts such as bridges 
or apply optimisation methods to improve the efficiency or quality of a product. This suggests 
that proficiency in quadratic inequalities may increase learners’ confidence in application and 
transfer of knowledge to real-life situations (Tsamir & Bazzini, 2004). Apart from applications in 
engineering and science, such real-life contexts may also include business, economics and 
agriculture within the experiential world of learners. Examples may be to maximise profit taking 

The purpose of this mixed methods study was to investigate the effect of a graphing calculator 
(GC) intervention on Grade 11 learners’ achievement in quadratic inequality problem solving. 
The quantitative aspects of the study involved an experimental and control group design in 
which the experimental group received instruction using the GC activities and the control 
group was taught without using the GC. The qualitative aspects of the study involved script 
analysis and task-based interviews. We used three data collection instruments: a quadratic 
inequality problem solving test used both as a pre- and a post-test administered to both the 
experimental and the control group learners, a written task analysis protocol and a task-based 
interview schedule. The results of the dependent samples t-test confirmed a statistically 
significant improvement in the quadratic inequality problem solving achievement of the 
experimental group with a Cohen’s d effect size of 1.3. The dependent t-test results for the 
control group were also a statistically significant improvement but with a smaller Cohen’s d of 
1.2. The results of the independent t-test indicated that the experimental group achievement 
was significantly higher than that of the control group with a Cohen’s d effect size of 0.79. 
Script analysis of selected learners’ post-test solutions also showed that learners in the 
experimental group employed more problem-solving strategies (at least three – symbolic, 
numeric and graphical). Interview results of purposively selected learners also affirmed that 
experimental group participants perceived the GC intervention to have prepared them more 
effectively for multiple solution strategies of the quadratic inequality problem tasks. The 
researchers recommend the integration of GCs in the teaching and learning of mathematics in 
general and quadratic inequalities in particular. However, more research is needed in the 
integration of the GC in high-stakes assessment.
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into account multiple factors and therefore solutions of 
systems of inequalities (e.g. linear programming). Learners 
should thus develop the appropriate mathematical skills of 
solving inequality problems and interpreting their solutions 
accurately. The general study of inequalities is also important 
for the understanding of epsilon-delta proofs in later real 
analysis studies for those learners who might pursue 
advanced studies in mathematics. Despite this elaborate 
rationale for the study of inequalities, high school learners 
frequently view quadratic inequalities to be one of the most 
difficult topics in the mathematics curriculum (Bicer et al., 
2014; Halmaghi, 2011). These difficulties extend to the 
solution of quadratic inequalities by learners. As an important 
topic, the South African Curriculum and Assessment Policy 
Statement (CAPS) for Mathematics in the Further Education 
and Training (FET) Phase requires all the learners (Grades 
10–12) to study quadratic inequalities and their usefulness in 
solving real-life problems (Department of Basic Education 
[DBE], 2011). In this regard, mathematics teachers are at 
liberty to use digital tools such as graphing calculators (GCs) 
to enhance the conceptual understanding of quadratic 
inequalities and reduce conceptual obstacles. 

The International Society for Technology in Education (ISTE, 
2016) recommends the use of digital technologies, including 
GCs, to improve the teaching and learning of mathematics. 
Research also shows that integrating these information and 
communication technologies (ICTs) also has the potential to 
develop learners’ critical thinking skills and provides them 
with the opportunity to interpret solutions of inequalities 
sensibly (Abramovich & Ehrlich, 2007; Tsamir & Almog, 
2001). Although the use of technology can provide learners 
with a rich learning environment as advocated by the DBE’s 
(2011) CAPS (intended curriculum), there has not been a 
widespread adoption of GCs either in the implemented 
curriculum or in the assessed mathematics curricula of South 
African high schools.

Problem statement 
Despite the CAPS expressing the desirability for all FET 
learners to understand quadratic inequalities, the National 
Senior Certificate (NSC) results contrastingly show that 
many learners repeatedly have trouble solving inequalities 
correctly (DBE, 2016, 2018, 2019). From the first authors’ 
experiences Grade 11 learners struggle to understand this 
topic when introduced to it and seem to rely mainly on rote 
memorisation of procedures. Learners also have difficulty 
making connections between quadratic inequalities and their 
pre-concepts such as linear inequalities and quadratic 
equations. In addition, learners have difficulty providing 
meaningful solutions in interval notation, leading to errors 
regarding the domain and range. They also interpret wrongly 
the connectives ‘and’ and ‘or’ in various problem contexts. 
As already noted earlier, literature also confirms that many 
learners experience difficulties when solving quadratic 
inequality problems in particular (Bicer et al., 2014; Halmaghi, 
2011; Verikios & Farmaki, 2010). From the NSC diagnostic 
reports (DBE, 2016, 2018, 2019) many learners appear to 

procedurally treat the inequality as an equation rather than 
an optimisation problem. This misconception results in 
inaccurate solutions and consistently limits learners’ ability 
to provide sensible answers (Yin, 2005). Providing learners 
with relevant or realistic (optimisation) contexts as advocated 
in Realistic Mathematics Education (RME) might help them 
make better sense of their answers. 

Connecting algebra with functions using a GC is a missing 
aspect of classroom practice that may help learners to 
construct more accurate visual representations of quadratic 
inequalities and their solution sets. The GC’s representational 
affordances appear to have the underexplored potential to 
meaningfully support, through activity and intertwinement 
principles of RME, the integration of algebra and functions. 
For example, learners with difficulties in describing the 
domain, range, maxima and minima, as well as restricted 
values, on graphs, including the representation of solution 
sets by means of the interval notation, might find participation 
in the GC-enhanced activities more illustrative and therefore 
more meaningful. In support of this potential, Bicer et al. 
(2014) argue that working with graphs, algebraic 
representations and tables of values simultaneously can help 
learners gain experience that makes their quadratic inequality 
problem solving more comprehensible. 

The function-based approach advocated by Verikios and 
Farmaki (2010) is a missing link that can be harnessed within 
the GC environment to more effectively develop learners’ 
contextual quadratic problem-solving strategies and visual 
thinking skills. Functions of real-life contexts represent 
horizontal mathematisation instances in RME of which a 
typical example is the function for the height of an object in 
free fall: f(h) = –16t2 +h0, where t is time in seconds and h0 is 
the initial height in metres. This is one of the gaps that this 
study sought to fill since the GC is capable of concurrent 
algebraic, numeric (table of values) and graphic 
representations. In this study we expected the use of the GC 
to promote the development of learners’ visualisation skills, 
and meaningful representation and interpretation of 
quadratic inequality results (Abramovich & Ehrlich, 2007; 
Tsamir & Almog, 2001). We thus reasonably expected the use 
of the GC to simultaneously mediate the effective teaching 
and learning of quadratic inequalities embedded in real-life 
contexts in which the real-world context would serve as a 
pivot for meaningfulness and relevance of mathematics to 
real(istic) situations envisaged in RME’s characterisation of 
mathematics as a human activity as articulated in the 
theoretical framework.

Purpose and research questions 
The purpose of this study was to explore the effectiveness of 
a GC intervention in the teaching and learning of context-
based quadratic inequalities to Grade 11 learners. To achieve 
this goal, the study addresses the following overarching 
research question: To what extent can the use of graphing 
calculators influence Grade 11 learners’ ability to solve quadratic 
inequality problems embedded in realistic or real-life contexts?
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The following sub-research questions guided this study:

•	 What is the effect of the pedagogical use of GCs on 
learners’ achievement in solving (contextual) quadratic 
inequality problems? 

•	 What strategies do learners in a GC-mediated classroom 
use to solve contextual quadratic inequality problems?

•	 What are the students’ perceptions of (contextual) 
quadratic inequality problem solving in a GC-mediated 
classroom?

Literature review
Research on learners’ achievement in solving quadratic 
inequalities 
Although inequalities are an important mathematics topic, 
there is limited literature on their teaching and learning in 
general, particularly quadratic inequalities. This paucity 
of  the literature signifies the persistence of a limited 
understanding of why learners continue to experience 
challenges with the topic. Verikios and Farmaki (2010), for 
example, affirm that not enough research has been 
conducted  with respect to learner’s understanding of 
quadratic inequalities. A better understanding of learners’ 
misconceptions (sources of misunderstanding) can lead to a 
better understanding of how to teach quadratic inequalities 
more effectively. Grewal’s (1994) study of 311 Grade 12 
learners taking higher grade Mathematics in South Africa 
found that they did not have sufficient prerequisite 
knowledge, and did not display a satisfactory level of 
mastery in solving quadratic inequalities. As seen earlier, the 
development of sufficient prerequisite knowledge may lead 
to a stronger mastery of quadratic inequality problem solving 
ability among learners. As seen earlier, Bicer et al. (2014) 
found that many middle and high school learners in the 
United States have misconceptions and difficulties regarding 
quadratic inequality problem solving. They also found that 
college preservice teachers experienced the same difficulties 
with solving and interpreting quadratic inequalities 
accurately. Understanding the difficulties encountered by 
students can help teachers teach their learners to become 
better quadratic inequality problem solvers, and more so in a 
GC-mediated environment. Yin’s (2005) single case study 
found that the learner solved quadratic inequalities 
procedurally without really coming to grips with concepts 
like the domain, nor was she able to logically check her 
answers. This is a problem that a GC-mediated environment 
can help solve. Also, limiting quadratic inequality problem 
solving to algorithmic procedures without introducing 
(optimisation) contexts that are experientially real to students 
as envisaged in RME might obscure their conception of 
critical prior knowledge of the domain and range concepts 
and hinder their ability to check and make proper sense of 
their answers. In their study, Tsamir and Reshef (2006) 
investigated whether to present Grade 10 students with a 
single method or with several methods to solve quadratic 
inequalities. They introduced the students to three differently 
sequenced approaches – the sign chart, the graphic and the 
logical connectives approach – and found that almost all 

students correctly solved the quadratic inequalities and liked 
being introduced to different approaches. However, most 
preferred the graphic approach to the other two methods. 
Thus, we considered that presenting learners with multiple 
strategies of solving quadratic inequalities, within a GC 
intervention, might constitute more effective teaching and 
learning of the topic. Aided by the use of the GC, the function-
based approach is likely to be more effective. Following 
Balomenou, Komis and Zacharos’s (2017) recommendation 
on the use of digital tools, this study investigated the efficacy 
of GC use to fill the research gap in the teaching and learning 
of quadratic inequalities embedded in realistic contexts. 
Below we survey literature on the use of the GC in school 
mathematics education in search of a solution for effective 
ICT-intensive teaching and learning of quadratic inequalities.

Research on the effect of graphing calculator use in the 
mathematics classroom 
Early research reveals that GCs significantly affected the 
teaching and learning of mathematics, particularly functions 
and graphs (Dunham & Dick, 1994) and was later expanded 
to statistics, geometry, trigonometry, algebra, modelling and 
calculus concepts (Muhundan, 2005). Several researchers 
report that the use of GCs in mathematics education improves 
learners’ achievement in solving algebra problems in applied 
contexts, interpreting graphs and general cognitive 
understanding (e.g. Chen & Lai, 2015; Karadeniz, 2015; 
Parrot & Leong, 2018; Wareham, 2016). This suggests that 
learners who use GCs can have relative advantage in 
mathematical problem solving. Additionally, learners using 
GCs can consistently display more innovation, speed and 
accuracy in their problem-solving strategies as well as better 
reasoning in their answers and better visualisation of graphs 
and abstract concepts (Hunter, 2011; Thomas, 2016). The use 
of a GC can also potentially improve learners’ organisation of 
written work, and the correct use of notation and symbols 
(Shahriari, 2019). However, for the successful use of GCs 
there must be a shift in classroom culture (Parrot & Leong, 
2018), where learners become the constructors of their own 
mathematical knowledge. This is in line with RME’s activity 
and guided reinvention principles of allowing learners the 
freedom to become active participants and to reinvent 
mathematics with the teacher’s guidance (Freudenthal, 
1991). Ndlovu (2019), for example, states that the created 
opportunities enabled learners to use visual models, 
diagrams and symbols for exploring and figuring out the 
solutions. Rich (1991) also found that GC use changed the 
classroom dynamics in that learners became more willing to 
interact, discuss and share their strategies of solving 
mathematical problems, resulting in improved retention of 
content. However, this study examined the effect of a GC 
intervention on the learners’ achievement and strategies in 
quadratic inequality problem solving.

Regarding problem-solving strategies, Kenney (2014) 
proposed five that are applicable to a GC environment, 
namely: (1) linking verbal and symbolic representations, (2) 
recognising conventions and their properties, (3) making 
connections to symbols and their graphs, (4) linking symbols 
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with their numeric representation (e.g. inequalities and 
tables) and (5) recognising the meaning of symbols within 
the context of the problem. Kutzler (2000), on the other hand, 
proposed three strategic steps for solving more complex and 
real-world problems using the graphing calculator, namely: 
(1) choosing the model and translating words into the 
mathematical expressions, (2) applying the available 
algorithms to solve the model problem and (3) translating the 
model solution into a real-world solution. These strategies 
became a core of the activity principle in the RME approach 
to provide guidance for solving real-world quadratic 
inequality problems in a GC environment.

RME as a theoretical framework
We adopted RME as a theoretical framework for this study. 
RME, developed in the Netherlands for the teaching and 
learning of mathematics, views mathematics as a human 
activity in which contextual or experientially real problems 
are used as the starting points for learning (Drijvers, 2019). It 
takes a cue from Freudenthal’s (1991) advocacy that the 
learning of mathematics must be experienced as meaningful 
or authentic sense-making by the learners. In the RME 
approach, learners are also afforded the opportunity to use 
their own informal strategies and models to solve problems 
and to discuss with the teacher and fellow learners (Theodora 
& Hidayat, 2018). To this end, RME was relevant as a lens to 
understand quadratic inequality problem solving in a GC-
mediated learning environment. We highlight four key 
constructs in this framework that are applicable to this study, 
namely the meaning of ‘realistic’, activity principle, didactic 
phenomenology and mathematisation (Drijvers, 2019; 
Ndlovu, 2014; Van den Heuvel-Panhuizen & Drijvers, 2014). 

Realistic in the context of digital tool use in RME means that 
learners should experience activities with digital technology 
as meaningful (Drijvers, 2019). That is, the tool must be fit 
for purpose by helping learners to solve the problems they 
want or are tasked to solve and produce intelligible 
representations and results. The activity principle views 
mathematics as learning by doing, and thus digital 
tool  use  ought to give learners opportunities to actively 
explore, reinvent mathematics and (re)construct their own 
mathematical understandings as the chief actors (Drijvers, 
2019), not as passive observers of the teacher’s use. These 
activities ought to provide learners with experientially real 
situations that will make them appreciate the purpose and 
functionality of the digital tools. In this study, learners 
experienced the use of a GC through the meaningful and 
purposeful activity of graphing quadratic functions and 
related quadratic inequalities to produce meaningful 
solutions (symbolic, numeric and graphic) and to make 
connections among these. 

A didactic phenomenology view of digital tool use means 
that as the tool gets integrated into the mathematics 
classroom it can become part of the shared technology-rich 
classroom discourse that becomes a phenomenon worth 

studying (Drijvers, 2019). In other words, when digital tools 
such as GCs and dynamic geometry software become 
ubiquitous in the classroom their exploratory use for 
different topics begins to emerge spontaneously. Didactical 
phenomenology also concerns the analysis of how 
mathematical thought objects can help to organise and 
structure phenomena by means of specific activities or 
concepts (Van den Heuvel-Panhuizen & Drijvers, 2014). In 
this case, the teacher may organise the quadratic inequalities 
(being the phenomena or mathematical objects) into possible 
instructional activities (or tasks) that support meaningful 
learning. The same principle provides opportunity for 
arranging the instructional activities into social groups for 
learners to collaboratively and interactively discuss their 
strategies and (re)inventions (Van den Heuvel-Panhuizen & 
Drijvers, 2014).

Mathematisation, on the other hand, refers to the activity 
of  doing mathematics (Van den Heuvel-Panhuizen & 
Drijvers, 2014). In the horizontal dimension, mathematical 
procedures are used to organise and solve problems 
embedded in real-life or realistic contexts. Such procedures 
include learners being able to schematise, formulate, 
transform and visualise the realistic or contextual problems 
mathematically and to transfer knowledge between 
different domains (Van den Heuvel-Panhuizen & Drijvers, 
2014). This is often referred to as moving from the world of 
life to the world of symbols which is comparable to 
mathematical modelling and problem-solving approaches. 
The vertical dimension entails the solution of a problem, the 
generalisation of the solution and the further formalisation 
thereof (Van den Heuvel-Panhuizen & Drijvers, 2014). This 
approach uses models, schemes, symbols and diagrams as 
conceptual tools for developing the mathematical relations. 
This is often referred to as a transition within the world of 
symbols from simple to more complex and better organised 
mental structures or schemes (Van den Heuvel-Panhuizen 
& Drijvers, 2014). The digital tool becomes the medium of 
mathematical expression. 

Research methodology
Research design
This study used a sequential mixed methods research 
design to investigate the effects of using a GC on Grade 11 
learners’ achievement and strategies in quadratic inequality 
problem solving. The quantitative aspects of the study 
focused on the classical (teaching) experiment that 
employed a pre-test-post-test control group design 
(Creswell, 2011; Laurens, Batlolona, Batlolona, & Leasa, 
2018) to address the first research sub-question. The time 
allocated for teaching and learning for the two groups was 
four weeks and the same teacher-researcher taught both 
groups. In particular, the experimental group was exposed 
to GC-mediated instruction in quadratic inequalities while 
the control group was taught using the traditional pen and 
paper method. The dependent variable in the teaching 
experiment was learners’ achievement in quadratic 
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inequality problem solving measured by means of learning 
gains between the pre-test and the post-test.

In answering the post-test, the experimental group was not 
allowed to use GCs to determine the solutions because in the 
NSC examinations candidates are not allowed to bring 
programmable calculators but they write the same test. We 
expected that if they had experienced greater learning gains 
they would demonstrate greater conceptual understanding 
and perform better than the control group in the post-test. 
This was also in compliance with the CAPS document, which 
requires the use of technology to enable learners to create 
tabular, symbolic and graphical representations (DBE, 2011). 
Experimental group learners were given adequate time (i.e. a 
week) to familiarise themselves with the use of the digital 
tool in the designed activities. Both the experimental and 
control groups were exposed to Kenney’s (2014) and Kutzler’s 
(2000) problem-solving strategies. The control group used 
more than one pen and paper visualisation method of solving 
quadratic inequalities (graphical, number line and table). 
These methods allowed learners to link verbal and symbolic 
representations to their graphs and solutions. Both groups 
were given the same learning tasks that required the use of 
these strategic procedures. The strategies suggested by 
Kenney and Kutzler assisted in the development of the rubric 
for assessing the problem-solving abilities of learners in a 
GC-enhanced classroom. 

The qualitative aspects of the study involved script 
analysis  to  address the second research sub-question, and 
task-based interviews to answer the third and final research 
sub-question.

Participants
The population for the study consisted of Grade 11 learners 
in one of the public secondary schools in Gauteng, South 
Africa. A combination of purposive and simple random 
sampling strategies was used to select the learner participants 
for the study. Purposive sampling was used to identify the 
public high school in Ekurhuleni North district that fell in the 
underperforming category (as measured by 2016 NSC results 
of the schools in mathematics). Purposive sampling is a non-
random method of sampling where the researcher selects 
information-rich cases for in-depth study (Patton, 2002) and 
from which the most can be learned (Merriam, 2009). This 
sampling helps to identify any common patterns of particular 
interest and value when recording the key experience and 
shared dimensions of a setting or phenomenon (Patton, 
2002). This sampling strategy befits the qualitative aspect as 
this approach seeks to understand the behaviour of the two 
groups of learners when solving quadratic inequalities in 
different classroom environments but in similar school 
settings.

We drew a random sample of 40 learners from a population 
of Grade 11 learners doing mathematics at the selected 
school. The 40 learners were randomly assigned to two 
groups of 20 learners each. One of the groups served as the 

experimental group and received GC-mediated instruction 
as the intervention. The other group served as a control 
group and received non-GC instruction to develop quadratic 
inequality problem-solving skills. At the beginning of this 
study, the two groups wrote the same pre-test at the same 
time. Approximately four weeks after the administration of 
the pre-test and completion of the series of intervention 
lessons, participants of both groups wrote the post-test on 
contextual word problems of quadratic inequalities to help 
us answer the first research question. In addition, we drew 
another random sample of two learners (a boy and girl) from 
the GC group after the post-test. These learners were 
interviewed to explore their perceptions of a GC-facilitated 
learning environment.

Research instruments
We used three instruments to collect data, namely self-
developed quadratic inequality problem solving tests 
(QIPSTs) to assess problem-solving proficiency, a self-
developed assessment rubric for script analysis informed 
by  Kenney’s (2014) and Kutzler’s (2000) strategies, and a 
self-developed semi-structured interview schedule to 
ascertain students’ perceptions of the GC-mediated learning 
environment. The tests were validated by experts prior to the 
research. Learning gains in quadratic inequality problem-
solving proficiency would indicate the effects of the GC 
intervention within and between the experimental and the 
control groups.

All the items for the learning activities and the tests were 
designed using the previous examination question papers 
and Grade 11 mathematics textbooks about quadratic 
inequalities. Identical RME-aligned quadratic inequality 
problems were set for the pre-test and post-test as described 
below.

Learners were given two quadratic inequality word problems 
to solve in both the pre-test and post-test as provided below:

1.	 A small-scale taxi owner’s daily profit is given by 
f(x) = −2x2 + 70x, in which x is the number of trips made 
per day. Find the number of trips that must be made per 
day if the profit is to be greater than or equal to R600.

This item used the commercial context of a taxi owner to test 
whether learners could formulate the corresponding 
quadratic inequality (ability to distinguish between an 
equation and an inequality) with a negative coefficient of x2 
(handling of signs when multiplying by negative values), 
formulating the inequality correctly (as a maxima problem) 
from the given word problem, graphing the inequality 
correctly (as a concave down graphic), as well as interpreting 
the domain correctly (as a solution set and not a single value). 
Many working-class students use public transport in South 
Africa and therefore the context would easily resonate with 
their daily experiences of commuting to and from school or 
to and from shopping centres. This formed the realistic 
context that was experientially real to South African learners 
(see Figure 1).
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2.	 	A small-scale farmer wanted to fence off her chickens 
within a rectangular area on her farm. The breadth and 
length are x metres and 2x – 3 metres. Determine the 
values of x that can give an area of her chicken run larger 
or equal to 20 metres2.

This small-scale chicken farming context item also tested 
whether learners could formulate the requisite quadratic 
inequality (using prior knowledge of the rectangle area 
formula and ability to distinguish between an equation and 
an inequality) with a positive coefficient of x2 (handling of 
signs when multiplying by positive values), formulating the 
inequality correctly (as a minima problem) from the given 
word problem, graphing the inequality correctly (as a 
concave up graphic), as well as interpreting the domain 
correctly (as a solution set and not a single value). Figure 2 is 
a visualisation of the solution set from the area formula 
f(x)  =  x(2x – 3) = 2x2 – 3x, which leads to the inequality 
2x2 – 3x ≥ 20. Many working-class or township school learners 
eat chicken as one of the cheapest meat types available in 
South Africa and the context would easily resonate with their 
daily experiences of not only eating chicken but also how 
they are raised. This formed the realistic context that was 
experientially real to South African learners (see Figure 2).

We used at least two markers (the teacher-researcher and a 
moderator) who obtained similar results using the same 
rubric. The issue of reliability of the pre-test was also 
addressed by conducting a pilot study with Grade 11 learners 

from a different school and both tests were marked by two 
teachers to compare their scores.

Learners’ scripts were scored using the memorandum in the 
appendix, a modified version of the Analytic Problem Solving 
Rubric developed by Charles, Lester and O’Daffer (1987) 
which has been widely used in other problem solving research 
(Yeo, 2011). The paired samples t-test was used to determine 
the statistical significance of within-group quadratic 
inequality problem solving learning gains. We used the 
independent samples t-test to determine the statistical 
significance of the between-group problem solving learning 
gains attributable to the GC intervention when compared to 
those of the control group. We calculated Cohen’s d using the 
2016 Statistical Package for Social Sciences (SPSS) to ascertain 
the practical significance or effect size of the GC intervention 
on the experimental group, the non-GC intervention on the 
control group and to compare both groups. The assessment 
rubric was used to describe qualitative changes in learners’ 
strategies manifested in the  their scripts. We used in-depth 
interviews to ascertain  students’ perceptions of the GC-
mediated learning environment.

Ethical consideration 
The study was approved by Stellenbosch University (ethical 
clearance/project number: 2023).

Results of the research 
Effect of the GC intervention on learners’ achievement 
in quadratic inequality problem solving
This section answers the first research question of this study 
which we broke down into four two-tailed null sub-
hypotheses:

•	 H01: There is no difference in the pre-test mean scores of 
the experimental and control groups, i.e. µ1 = µ3.

•	 H02: There is no difference between the pre- and post-test 
mean scores of the experimental group, i.e. µ1 = µ2.

•	 H03: There is no difference between the pre- and post-test 
mean scores of the control group, i.e. µ3 = µ4.

•	 H04: There is no difference in the post-test mean scores of 
the experimental and control groups, i.e. µ2 = µ4.

µ1 is the experimental group pre-test mean score; µ2 is the 
experimental group post-test mean score; µ3 is the control 
group pre-test mean score, and µ4 is the control group post-
test mean score.

To test the first hypothesis, we conducted a between-group 
samples t-test using SPSS and the formula: 
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The results show that there was no statistically significant 
difference between the experimental group (µ1 = 24.40; 
SD = 14.34) and the control group (µ3 = 20.05; SD = 13.98) in 

FIGURE 1: Visualisation of solution set for Q1 generated using a graphing 
calculator.
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FIGURE 2: Visualisation of the solution set for Q2 generated using a graphing 
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the pre-test since t = 0.97156 and p = 0.337416, which is greater 
than 0.05. This meant that both groups had similar 
(homogeneous) problem-solving abilities before the GC 
intervention to the experimental group. It is important to 
establish the pre-intervention knowledge levels of the 
experimental and control groups in order to control for pre-
existing knowledge. This confirmed that random assignment 
established equivalence between the two groups.

To test the second hypothesis, we conducted a paired samples 
(within-group) t-test using SPSS and the formula:
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The results showed a statistically significant improvement in 
learners’ problem-solving abilities of quadratic inequalities 
from the pre-test (µ1 = 24.40, SDE = 14.34) to post-test (µ2 = 
45.25, SDE = 20.65), with t = 5.62 and p = 0.00002, which is less 
than 0.05, in the experimental group. This meant that there 
were significant problem solving learning gains in the 
experimental group. To ascertain the size of the effect we first 
used Excel to obtain r = 0.602 and then calculated Cohen’s d 

using G*Power and the formula 
( ) ( )

=
−

+ −

µ µ

s s rs s2

2 1
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2

2
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1 2

d  to 

determine whether the difference was practically significant 
(or big enough to worry about). We obtained a d-value of 
1.256 (standard deviations), which indicated a large effect 
size since it is greater than Cohen’s (1988) threshold of 0.8. 
This meant a practically significantly large improvement of 
approximately 1.3 standard deviations in the experimental 
group’s (within-group) quadratic inequality problem solving 
achievement. However, this alone does not tell us whether 
GC use was more effective than the traditional approach 
used for the control group.

To test the third hypothesis, we conducted a paired sample 
(within-group) t-test using SPSS and the relevant t-test formula 
for paired samples. The results showed a statistically significant 
improvement in learners’ quadratic inequality problem 
solving learning gains from the pre-test (µ3 = 20.05; SD = 13.98) 
to the post-test (µ4 = 30.6; SD = 16.17), with a t-value of 5.30 and 
p = 0.00004, which is less than 0.05, in the control group. To 
ascertain the size of the effect we first calculated the correlation 

between the pre-test and the post-test and obtained r = 0.83576 
which we used to calculate Cohen’s d of 1.187 which indicated 
a large effect size since it is greater than Cohen’s (1988) 
threshold of 0.8. This indicated a large improvement of 
approximately 1.2 standard deviations in the control group’s 
quadratic problem solving achievement. Hence, not only were 
learning gains significant in both the experimental and control 
groups between the pre-test and post-test, but also both 
groups’ learning gains were large. What remains is to establish, 
by testing the fourth hypothesis, is whether the experimental 
group’s achievement was significantly higher or practically 
significantly higher than that of the control group. The 
establishment of this fact is important to show whether the GC 
intervention in the experimental group was superior to the 
control group’s traditional teaching approach or not since so 
far both were statistically significant and large. This leads us to 
the fourth hypothesis.

To test the fourth hypothesis, we conducted an independent 
samples (between-groups) t-test using SPSS and the relevant 
t-test formula for independent samples. We found that the 
experimental group’s post-test mean score (µ2 = 45.25; SD = 
20.65) was significantly higher than the control group’s mean 
score (µ4 = 30.6; SD = 16.17) since t = 2.49775 and p = 0.016945, 
which is less than 0.05. To ascertain the size of the difference 
in effect we computed Cohen’s d to determine the magnitude 
of the differences (effect size) in the means and obtained d = 
0.789937. This value was more than the threshold of 0.50 for 
moderate effect size and marginally short of 0.8 for large 
effect size (Cohen, 1988). This indicated that the learning 
gains of the experimental group were more than those of the 
control group (by a moderate margin of approximately 0.79 
standard deviations). That is, learners who used GCs in class 
became better quadratic inequality problem solvers than 
those in the control group who used traditional pen and 
paper methods, albeit by a moderate margin. This means that 
the experimental group’s learning gains were not only 
statistically significantly higher than those of the control 
group but also practically significantly superior. 

Problem-solving strategies used by learners in the 
experimental and control groups
This section answers the second research question: What 
strategies do the experimental and control groups learners display 
when solving contextual quadratic inequality problems? An 
analysis of learners’ written responses, in conjunction with 
the assessment rubric given in Table 1, revealed strategies 
they used to solve the quadratic inequality problems. 
Learners’ strategies are summarised in Table 2. 

TABLE 1: Rubric for quadratic inequality problem solving test.
Aspect rated 0 1 2 3

Understanding the problem No attempt at all Completely misinterprets the problem Partly interprets the problem Completely interprets the problem
Converting words into 
mathematical expressions

No attempt at all Completely models a wrong inequality Partly models a correct inequality Completely models a correct inequality

Solving the model problem No attempt at all Completely uses a wrong strategy Partly solves the model using correct 
strategy

Completely solves the model using 
correct strategies

Linking the strategies No attempt at all Implements only one strategy on wrong 
model

Implements two strategies Implements more than two strategies

Translating the model solution No attempt at all Incorrectly translates and checks the 
solution

Correctly and partly translates and 
checks the solution

Completely translates and checks the 
solution
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Table 2 shows that there was a considerable difference 
between the two groups in the use of problem-solving 
strategies. Seventeen (85%) learners in the experimental 
group used graphical strategies (i.e. making a model or 
diagram) while only six (30%) from the control group did so. 
The other most frequently used problem-solving strategies 
by learners from the experimental group were making tables 
(10 learners, 50%), looking for patterns (13 learners, 65%) and 
checking for accuracy (i.e. logical reasoning; 13 learners, 
65%). This indicates that learners from the experimental 
group more often made attempts as evidenced by the way 
the strategies were distributed. 

Learners’ perceptions of the GC-mediated quadratic 
inequality problem solving environment
This section answers the third research sub-question: What 
are the learners’ perceptions of contextual quadratic inequality 
problem solving in a GC-mediated environment? In-depth semi-
structured interviews were conducted with two purposefully 
selected learners to explore their perceptions of GC use in 
solving the context-based quadratic inequality problems. To 
improve readability, we corrected grammatical errors and 
omitted filler words, but maintained the integrity of the 
meaning attributable to the interviewees (Oregon Department 
of Transportation Research Section, 2010). Below are the 
transcripts involving a female learner, MK (pseudonym), and 
a male learner, GH (pseudonym): 

Teacher-researcher (TR): Does the use of the graphing calculator 
help you to understand the contextual quadratic inequality 
problems?

MK:	� Yes, it did help me to understand the problems of quadratic 
inequalities.

TR:	� Please explain how it did help you.

MK:	� A graphing calculator uses the graphs or number lines to 
solve the inequalities, which made it easy for me to see 
where solutions lie.

TR:	� Does the graphing calculator provide you with 
opportunities to use more than one method [e.g. table of 
values, graphs, factors or quadratic formula] in solving 
quadratic inequality problems? 

MK:	� Yes, it is possible to use more than one method.

TR:	� Can you explain a little bit.

MK:	� I used the graphing calculator to calculate the critical 
values, sketch the graph and then check the solution from 
the table of values.

TR:	� Did the graphing calculator use affect your choice of 
strategies to be applied in solving quadratic inequality 
problems?

MK:	� Yes, it does. I never liked using graphs to solve quadratic 
inequalities but the graphing calculator made me use and 
enjoy them. 

TR:	� Which of the following strategies were most helpful in 
solving quadratic inequality problems: graphs, tables, 
checking, drawings, etc.? 

MK:	� The most helpful strategies for solving quadratic inequality 
problems are drawing graphs and making table of values.

TR:	� Using a graphing calculator in quadratic inequality 
problems does not assist to master the concepts of critical 
value, interval notation, behaviour of function.

MK:	� Actually it does because I was able to figure out the 
behaviour of the function and to use critical values for 
writing the interval notation.

TR:	� Does the use of the graphing calculator help you to 
understand the contextual quadratic inequality problems?

GH:	� Absolutely yes. 

TR:	� Please explain how it did help you.

GH:	� Because the graphing calculator shows the quadratic 
graphs, I was able to figure out the x-intercepts and the 
shape of the graph, and then predict the region of the 
solution.

TR:	� Does the graphing calculator provide you with 
opportunities to use more than one method [e.g. table of 
values, graphs, factors or quadratic formula] in solving 
quadratic inequality problems? 

GH:	� Definitely, it allows me to use both graphs, table of values 
and number lines.

TR:	� Can you elaborate a little bit.

GH:	� The graphing calculator use afforded me a chance to work 
with different methods such as calculating the critical 
values and deciding the inequality solutions from the 
sketched graph. 

TR:	� Using graphing calculator does not affect your choice of 
strategies to be applied in solving quadratic inequality 
problems.

MK:	� I think it can affect because I now solve the quadratic 
inequalities using graphs and number lines that are 
usually displayed on the graphing calculator. The use of 
the graphing calculator made me feel more comfortable 
with graphs.

TR:	� Which of the following strategies were most helpful in 
solving quadratic inequality problems: graphs, tables, 
checking, drawings, etc.? 

GH:	� The most helpful strategies were drawing graphs, number 
lines and making table of values.

TR:	� Using a graphing calculator in quadratic inequality 
problems does not assist to understand the concepts of 
critical value, domain, interval notation, behaviour of 
function.

GH:	� Oh yes, it does assist. I am now able to predict the 
behaviour of the function and to write domain using 
correct interval notations.

Learners’ responses to the interview were positive and 
almost similar as they affirmed GC use assisted them to 
understand quadratic inequality problems better. They 
responded by saying that GC use ‘definitely’ and ‘absolutely’ 
helped them to ‘understand the problem’, ‘predict the 

TABLE 2: Frequencies of learners using quadratic inequality problem-solving 
strategies.
Group Drawing 

graphs
Making 
tables

Drawing 
number 

lines

Looking 
for 

patterns

Factors or 
formula

Checking 
for 

accuracy

No 
attempt

Experimental 17 10 9 13 11 13 15
Control 6 10 11 5 7 8 30
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behaviour of function’ and ‘figure out the region of the 
solution’ in quadratic inequalities. This showed that the 
learners got familiar with the GC environment as envisaged 
by the activity principle and phenomenological views of ICT 
tool use in the mathematics classroom. Furthermore, learners 
indicated that the GC use provided them with opportunities 
of employing more than one approach to solve quadratic 
inequalities. This meant learners were able to switch between 
the various representations with ease and could then have 
more time to reflect on the reasonableness of their solutions 
and engage in additional random exploration of the topic 
tasks. Admittedly, learners indicated that the GC use had an 
impact on their choices of problem-solving strategies. Both 
learners mentioned that the availability of the GC inspired 
them to use graphical strategies and number lines as they are 
frequently displayed. Through the use of the GC learners 
were able to master the concepts of critical values, domain, 
interval notation and graphs. These concepts were critical in 
determining the solutions of the quadratic inequalities. Using 
the T1-83 Plus GC, learners can see how the quadratic 
inequality is solved graphically as displayed on its screen in 
Figure 3. 

In this case, the graph displays the solution set of the 
quadratic inequality x2 − 2x − 3 > 0, which is a disjunction of 
x = −1 and x = 3. The use of the GC, according to the learners, 
demonstrates the graph with ‘its x-intercepts which are the 
critical values’ for the inequality. This enabled the learners to 
visualise the graph with critical values which made it easy to 
determine the solution of inequalities. The visual images of 
the graphical representations helped learners to understand 
easily the connections between the graphs and solutions of 
quadratic inequalities. 

Learners of the control group, in contrast, were exposed to 
the three methods of solving quadratic inequalities prescribed 
in the CAPS document (i.e. graphical, table and number line). 
While the methods have visual aspects, some of the learners 
mastered the quadratic inequalities through memorising the 

procedures. As such, the learners were able to determine the 
critical values (x-intercepts) of the quadratic expressions but 
could not write meaningful solutions of the inequalities. 
Learners further struggled to express their solutions in set 
builder or interval notations. This is consistent with the 
findings of the DBE (2018), which indicated that learners 
treated the inequality as an equation and their solutions did 
not make sense. 

Discussion of results 
In this section we summarise and discuss our findings 
focusing on the quantitative for researchers who plan to 
integrate the GC in their classrooms. 

Effect of graphing calculator use on learners’ quadratic 
inequality problem solving achievement 
This study addresses the issue of whether GC use affected 
the learners’ achievement and strategies in solving quadratic 
inequality problems. In this study the GC appeared to be an 
appropriate instrument for improving learner’s achievements. 
The findings, using an independent t-test, showed that there 
was a statistically significant difference in the mean scores of 
the post-test for the experimental and control groups. Such 
findings are compatible with the results obtained in the 
previous research, which showed that learners exposed to  
GC-mediated environment can achieve significantly higher 
scores in problem solving than those who were not (Rich, 
1991; Tan et al., 2011). This study adds the case of quadratic 
inequalities in which RME principles were observed in terms 
of both the contexts of problems and the integration of the 
GC, where each learner had access to their own device. The 
results also support Thomas’s (2016) findings that learners 
who persistently use a GC can achieve more learning gains 
and be capable of greater flexibility in their problem-solving 
strategies. Incorporating Kutzler’s (2000) and Kenney’s 
(2014) problem-solving strategies into the GC meditated 
classroom could have led to more systematic experimental 
group students’ involvement in quadratic inequality problem 
solving activities and more insightful reflection on the 
effectiveness of their problem-solving strategies. However, 
not all learners of the experimental group were able to 
operate the GC in the intended way. Some of them 
experienced technical and conceptual obstacles leading to 15 
‘no attempts’. The number of ‘no attempts’ was, nevertheless, 
higher (double) for the control group learners. Learners 
experienced technical difficulties in setting appropriate 
viewing windows of GCs. They also made some syntactic 
errors in entering negative numbers with a different minus 
sign than used for subtraction. This is in line with the 
previous findings that revealed that the use of GC in teaching 
and learning often turns out to be more complex than 
expected (Karadeniz, 2015).

Effect of graphing calculator use on learners’ problem-
solving strategies in written tasks
The findings from the learners’ written task solutions 
revealed that there was a difference between the experimental 
group and control group in the way they answered and FIGURE 3: Solution of a quadratic inequality displayed on the graphing calculator.

TI-83 Plus

x = –1 x = 3
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spread their problem-solving strategies in quadratic 
inequalities. Despite the fact that the control group was 
exposed to different visual methods (e.g. graph and number 
line), they had to memorise some of the necessary procedures 
to understand the concept. The use of a GC as a visual tool 
helped learners in the experimental group to intuitively 
master the properties of algebraic processes, which are 
missed during the traditional learning process. With the use 
of a GC, learners can repeat the algebraic processes supported 
by the visual images and representations. In that regard, the 
results did show that learners approached questions 
differently. Specifically, the experimental group consistently 
used graphical and numerical representations to solve 
problems and performed better. This is consistent with the 
results of earlier research, which indicated that using GCs 
leads to a different distribution of solution strategies, 
particularly the increased use of graphical strategies (Chen & 
Lai, 2015; Harskamp, Suhre, & Van Streun, 2000). This further 
shows that GC use remarkably expanded the learners’ 
repertoire of problem-solving strategies to include more 
visual procedures. This was also supported by other 
researchers who reviewed that learners become better 
problem solvers when GCs are used in class (Parrot & Leong, 
2018). This indicates that the GC-supported learning 
modelled by Kutzler’s (2000) and Kenney’s (2014) problem-
solving strategies afforded learners of the experimental 
group opportunities to explore quadratic inequality problems 
by linking strategies such as making a model or diagram, 
using table of values, linking verbal and symbolic 
representations and using logical reasoning to infer the 
meaning within the context of the problem.

Learners’ perceptions of graphing calculator use in 
quadratic inequality problem solving
The results of the in-depth interviews of the two learners 
from the experimental group showed that the GC availability 
had a positive effect on their learning of contextual quadratic 
inequality problems. In their responses, learners explained 
that graphing calculators enabled them to use more than one 
problem-solving strategy (e.g. graph, table of values, number 
line, etc.). The use of different strategies enhanced the 
learners’ understanding of quadratic inequality problems. 
This supports the findings obtained by prior researchers 
(Montijo, 2017; Parrot & Leong, 2018) reporting that the 
multiple linked representations provided by a GC in the 
form of graphic, tabular and computation improved 
the  learners’ global view of problem solving. According to 
Kenney (2014), such problem-solving strategies may be 
beneficial for learners as they link the algebraic and 
geometrical affordances. The use of different strategies 
enabled learners to enjoy and feel comfortable with quadratic 
inequality problems as they were able to move back and 
forth among these forms. This is consistent with the results of 
Parrot and Leong (2018) who found that such representations 
give learners more time to think about the problem itself 
without focusing on long algebraic procedures. The results 
also align with Ndlovu’s (2019) findings that the use of a GC 

increased the learners’ confidence in solving more challenging 
problems.

In addition, the findings showed that learners perceived that 
GC use affected their choices of problem-solving strategies 
in quadratic inequalities. The interview results indicate that 
the consistent use of GC stimulated and increased the 
learners’ application of graphical strategies. This finding is 
supported by Chen and Lai (2015) who reported that GC use 
led to changes in the mathematics learners’ solution 
strategies that they employed. We also found that the use of 
GCs enabled learners to understand and feel comfortable 
with functional graphs. The indications are that learners 
mastered well the properties of functions which made it 
possible for learners to visualise the solutions of the quadratic 
inequality problems.

These results are consistent with previous studies which 
indicated that the use of GCs in teaching and learning was 
helpful to learners’ cognitive understanding, visualisation 
and achievement in mathematics classrooms (Karadeniz, 
2015). This is in line with the recommendations of DBE (2018) 
that integrating algebra with functions can improve learners’ 
visual understanding of quadratic inequalities. This means 
learners can develop a balance between algebraic solutions 
and graphical strategies through the use of a GC. 

Conclusion 
Information obtained from the results of this research showed 
that exposing learners to a GC-supported learning environment 
helped them to improve their achievements and to develop 
formal problem-solving strategies in quadratic inequalities 
compared to those who used non-GC methods. The use of a 
GC created an exceptionally enabling learning environment 
that became more suitable for learners to be engaged with 
experimental activities. These experimental activities helped 
the learners to critically identify the main facts of the problem, 
to draw its model supported by charts, tables and visual 
images, and to reflect on the selected strategies of solving 
quadratic inequalities. The GC served as a tool for integrating 
algebra with functions so that learners can have a better visual 
understanding of quadratic inequalities. Using a GC 
potentially raised learners’ cognitive achievement in quadratic 
inequalities, in particular as they were able to observe the 
different representations connected to the concept. The varied 
representations (algebraic, arithmetic, geometric, number 
pattern) of quadratic inequalities helped learners to gain 
insight into the big ideas in mathematics. As learners switched 
between different representations and contexts of the 
mathematical concept, they were able to realise that such 
differences in fact are interconnected and interrelated by a 
single mathematical idea. Such perceptions are critical in 
raising learners’ procedural fluency and applying abstract 
concepts to concrete real-life mathematical experiences. The 
idea is that learners who are consistently exposed to GC-
supported learning can see the close relationship between 
concepts and procedures, which is a strong foundation of this 
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study to write meaningful interval notations of quadratic 
inequalities as solution sets.

Recommendations for teachers
The findings of our research study led us to the following 
recommendations for teachers who desire to adopt GC-
supported lessons in quadratic inequality problems:

•	 Teachers should consider integrating GCs in teaching 
and learning of quadratic inequalities as their availability 
in class can improve learners’ academic achievement and 
solution strategies. This tool, GC, potentially integrates 
algebra with functions so that learners can have a better 
visual representation of quadratic inequalities.

•	 Teachers should consider using GCs in their teaching and 
learning of quadratic inequalities as learners are afforded 
opportunities to employ different approaches (graphical, 
table of values, number line) for increasing the learners’ 
choices of problem-solving strategies.

•	 Teachers should consider integrating GCs in teaching 
and learning quadratic inequalities as they increase the 
use of a graphical approach that enables learners to 
connect the x-intercepts with quadratic inequality 
solutions. This can help learners to distinguish equations 
from inequalities.

•	 Teacher training institutions should assume the lead in 
developing preservice teachers on how to carefully create 
a rich learning environment supported by the use of GCs 
for learners to realise the multiple representations 
(graphical, symbolic and numeric) of quadratic inequalities. 

On the other hand, we recommend that learners should be 
given more time to use GCs in order to fully master all their 
key functions and to reduce syntactic errors in entering 
negative coefficients of quadratic inequalities. This can also 
help to minimise the technical difficulties experienced in 
setting appropriate viewing screens or windows of GCs.

It is further recommended that educational policymakers, 
including universities, must support the drive for progressive 
changes in the educational approach, in both teachers’ and 
learners’ roles in classrooms, where technology is in use. If 
learners are allowed to use GCs in their assessment, they can 
have a clear impression of their possible effects on their 
solution strategies of quadratic inequality problems.
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Appendix 1: Memorandum.
Question Workings Mark Allocation

1. f(x) ≥ 600 ü Interpreting problem
-2x2+70x ≥ 600 ü Forming math model

-2x2+70x-600 ≥ 0 ü Standard form
x2-35x-300 ≤ 0 ü Dividing by a negative
(x-20)(x-15) ≤ 0 ü Factors or quadratic formula
x=20 or x=15 ü Critical values

15 20

ü Method

ü Interval or set builder notation

ü Answer in the context of problem

15 ≤ x ≤ 20
2. A = length × breadth ≥ 20 ü Interpreting problem

x (2x-3) ≥ 20 ü Forming math model
2x2-3x-20 ≥ 0 ü Standard form

(2x+5)(x-4) ≥ 0 ü Factors or quadratic formula
x = -2.5 or x = 4 ü Critical values

ü Method 

ü Solution in interval or set builder notation

ü Answer in the context of the problem

x ≤ -2.5 or x ≥ 4
But x cannot be ≤ 0,then x ≥ 4 

-2.5 4
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