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Introduction and research gap
Interpreting phenomena under uncertainty is a substantial cognitive activity of our daily life, 
which is encountered constantly in everyday situations. Starting from a simple question, ‘is it 
going to rain tomorrow?’, to a more sophisticated inquiry, ‘can a person accomplish his future 
goal?’. Moreover, many professions such as insurance, economics, medicine, physics, and 
biology require making decisions under uncertainty. As Batanero, Chernoff, Engel, Lee, and 
Sánchez (2016) declared, to function adequately in society, citizens need to overcome their 
deterministic reasoning and accept the existence of chance in nature. Hence, this need for 
probabilistic reasoning has been acknowledged by educational institutions in many countries, 
and probability has been embedded in the official curricula at various levels, including teacher 
education.

While the discussion of probabilistic reasoning becomes necessary for all learners at different 
levels of study, it is particularly crucial for the teacher education of preservice mathematics 
teachers (PSMTs), those university students who learn to teach intentionally and systematically 
(Morris, Hiebert, & Spitzer, 2009). As noted in various studies, one pedagogical difficulty for 
teaching probability is the mathematics teachers’ lack of specific preparation in such content 
(Ainley & Monteiro, 2008; Batanero, Burrill, & Reading, 2011; Batanero, Contreras, Fernandes, & 
Ojeda, 2010; Franklin & Mewborn, 2006; Pecky & Gould, 2005). Furthermore, fundamental broad 
statistical knowledge is not adequate for teachers to effectively teach probability (Batanero, 
Godino, & Roa, 2004). This situation appears obviously in the Egyptian context, wherein only 
about 9% of all subjects during the whole duration of the four-year mathematics teachers’ 
preparation programme has been assigned to study statistics, including probability (Elbehary, 
2020). Consequently, because of such limitedness and the specific characteristics of the probability 
subject that is not usually encountered in other mathematics areas (e.g., multifaceted view and the 
lack of reversibility), probability education incorporates distinct challenges for both teachers and 
students (Batanero et al., 2016).

Additionally, and regarding probabilistic reasoning, it has been highlighted by Stohl (2005) that 
‘the success of any probability curriculum for developing students’ probabilistic reasoning 
depends greatly on teachers’ understanding of probability’ (p. 351). Such focus on reasoning is 
compatible with Ball, Lubienski, and Mewborn’s (2001) argument concerning the reasoning 
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processes, which underpin all teaching practices. As they 
noted, teachers’ knowledge plays a significant role in the 
quality of their teaching since many activities, such as 
determining what students know, representing mathematical 
ideas, and modifying textbooks, involve reasoning and 
thinking. Moreover, teachers’ knowledge itself that 
consolidates their reasoning manners has been regarded as 
one factor to determine students’ understanding and 
achievement (Darling-Hammond, 2000; Darling-Hammond 
& Sykes, 2003; Fennema & Franke, 1992; Mosvold & 
Fauskanger, 2014; Rivkin, Hanushek, & Kain, 2005; Schacter 
& Thum, 2004). Because of such a relationship between 
teachers’ knowledge and pupils’ understanding, the limited 
emphasis on learning statistics and probability during 
teacher education may be one factor why the Egyptian 
pupils’ achievement in data and chance remains the lowest 
among other mathematics areas (Elbehary, 2019).

The aforementioned argument strengthens teachers’ probability 
knowledge that tacitly includes reasoning under uncertainty 
to positively impact students’ learning. ‘Teachers’ here 
denotes  PSMTs who will teach probability to primary and 
lower secondary school students. Yet, what is the probability 
knowledge that students need to acquire? The answer to such 
a question has been explicitly stated through various 
professional organisations. For example, the National 
Council for Teachers of Mathematics (NCTM) recommended 
Grades 5–8 students explore situations through experimentation 
and  simulation, construct sample spaces to determine the 
probabilities of various realistic phenomena, and appreciate 
the practice of probability knowledge in their daily 
life.  Furthermore, middle-grade students should compute 
probabilities for simple and compound events (NCTM, 1989, 
2000). These recommendations are consistent with what the 
American Statistical Association (ASA) has advocated for 
studying theoretical probability, experimental probability and 
simulation processes, and hypothesis testing for college 
students (Aliaga et al., 2005).

Repeatedly, about the relationship between teachers’ 
knowledge and students’ understanding, Papaieronymou 
(2010) indicated teachers’ awareness to confront common 
probabilistic misconceptions, conduct simulations, and 
demonstrate probability concepts to students as crucial 
pedagogical content knowledge that has been highlighted 
by NCTM, ASA, the American Mathematical Society 
(AMS),  and the Mathematical Association of America 
(MAA). Acknowledging these recommendations, learning 
both theoretical and experimental probability is fundamental. 
This matches the Egyptian curriculum, in which students at 
primary and lower-secondary grades are expected to 
acquire theoretical, experimental, and subjective (intuitive) 
interpretations of probability. On the other side, at the 
university level, PSMTs should perceive conditional 
probability and Bayes’ theorem. 

Chernoff and Sriraman (2014, 2015) have classified the 
probability education research into four periods:  (1) the 

Piagetian period,  which was dominated by Piaget and 
Inhelder’s (1975) investigations of people’s probabilistic 
reasoning. (2) The post-Piagetian period, in which probabilistic 
reasoning was reviewed through Fischbein’s (1975) research, 
focusing on primary and secondary intuitions, and Tversky 
and Kahneman’s (1974) investigations regarding judgmental 
heuristics of adults when they reason under uncertainty, in 
the field of psychology.  (3) The contemporary research period, 
which witnessed a significant shift towards examining 
curriculum, instruction, probabilistic intuitions, and learning 
difficulties; it was led by a group of researchers in the 
mathematics education field (e.g., Falk, 1986; Konold, 1989, 
1991). (4) The assimilation period started after 2000 while the 
research continues to develop models, frameworks, and 
theories associated with intuition and learning difficulties in 
probability, in line with the previous period. At this stage, the 
probability education research has been shifted smoothly 
from replicating and importing research findings of other 
fields (e.g., psychology) to develop its specific interpretations 
of results stemming from difficulties associated with teaching 
and learning probability, under the umbrella of mathematics 
education. Nevertheless, recent investigations shed light on a 
renaissance period of psychological research in mathematics 
education (e.g., Chernoff, 2012; Chernoff & Russell, 2012; 
Chernoff & Sriraman, 2015).

Based on this historical development of probability 
education  research, some areas for future study have been 
identified; one of these concerns is developing a unified 
framework that models several conceptions of probability 
(Chernoff & Russell, 2014; Jones, Langrall, & Mooney, 2007; 
Shaughnessy, 1992). This trend of research has been 
recommended for further clarification, particularly regarding 
the witnessed contested area about the nature of probability, 
as the theory  of  probability itself has a mathematical side 
and  a foundational or a philosophical side (Chernoff & 
Sriraman, 2015). From this aspect, a central inquiry has been 
raised through the current study: how do PSMTs reason 
under uncertainty? In other words, what are the characteristics 
of PSMTs’ probabilistic reasoning, which implies a cognitive 
activity associated with a context containing uncertainty 
elements (Savard, 2014)? Exploring PSMTs’ probabilistic 
reasoning may contribute to the existing literature by 
modelling their probability conceptions in one schema.

Theoretical perspective
Many previous studies showed that adults (including 
university students) have various conceptions about 
probability and relevant biases in reasoning under uncertainty 
(e.g., Batanero & Sanchez, 2005; Dollard, 2011; Fischbein & 
Schnarch, 1997; Kazak & Pratt, 2017; Konold, 1989; Konold, 
Pollatsek, Well, Lohmeier, & Lipson, 1993; Tversky & 
Kahneman, 1974). Moreover, and as noted by Stohl (2005), 
without specific training in probability, preservice and 
practising teachers may employ their intuitions and 
beliefs.  Despite that, there is no further discussion that 
represents PSMTs’ probabilistic conceptions in a unified 
schema.
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To address this, the current study has acknowledged that 
‘learners’ conceptions are underlined by their way of 
reasoning towards a certain phenomenon’ to be the essential 
hypothesis. Alternatively, one way to identify PSMTs’ 
probabilistic conceptions is to explore how they reason 
under uncertainty.

Conception defines a mental filter to interpret a situation and 
make sense of it (Giordan & Pellaud, 2004); it helps to keep a 
balanced cognitive structure when learners adapt a new 
knowledge (Piaget, 1975). Conceptions can be valid in 
some  contexts, but they cannot be generalised across all. 
For  this  reason, they preferably should not be described as 
misconceptions because they still work in certain circumstances 
(Giordan, 1998). Therefore, Savard (2014) argued that, 
concerning probability knowledge, it is not reasonable to 
pretend that a certain conception could accurately explain a 
certain level of conceptual understanding. This is because 
classifying conceptions in a normative way does not declare 
the value of learners’ reasoning to understand the world.

Furthermore, and on the relationship between learners’ 
conceptions and their probabilistic reasoning, while 
probabilistic conceptions are rooted in different epistemologies, 
these epistemologies themselves are emphasised by the 
reasoning employed to think of a phenomenon. In this regard, 
Konold (1989) distinguished the formal knowledge of 
probability and natural judgmental heuristics as two types of 
cognition when reasoning under uncertainty. Later, Savard 
(2014) redefined cognition under uncertainty as probabilistic 
reasoning versus deterministic reasoning, which has inspired 
the current study.

In light of Savard’s (2014) clarification, probabilistic 
reasoning considers two significant factors: variability and 
randomness. On one hand, variability indicates that 
the  outcome is not fixed; it alters depending upon the 
probable favourable cases (i.e., theoretical probability), 
the  frequencies (i.e., experimental probability), or some 
evaluation criteria (i.e., subjective probability) (Canada, 
2006; Garfield & Ben-Zvi, 2005). On the other hand, 
randomness implies uncertainty and independence; while 
the former reflects that the event cannot be predicted with 
certainty, the latter indicates no correspondence between 
what happened before and the new outcome (Dessart, 
1995; Green, 1993). In contrast, deterministic reasoning 
seeks correlation, using present and past information to 
describe an event. There is dependence between the events 
that might justify a result. Besides, the deterministic 
estimation indicates an accurate prediction (Briand, 2005), 
in which there is no uncertainty.

From an educational viewpoint, probabilistic reasoning 
signifies a principal reason why probability is involved in the 
school curriculum, as the study of probability sustains the 
creation of probabilistic reasoning. It supports learners, 
formally, to structure their vague thinking about random 
phenomena (Borovcnik & Peard, 1996). Additionally, because 
of the increasing number of events described in terms of risk, 

understanding the related concepts to reason under 
uncertainty should be investigated (Martignon, 2014; 
Pange  & Talbot, 2003). That is consistent with the need to 
overcome the individuals’ deterministic thinking and admit 
the presence of chance in nature (Batanero et al., 2016).

The above argument reflects the process of probabilistic 
reasoning as an expected capability that students should 
acquire through learning the content of probability, either at 
pre-university or at teacher education level. This appears 
clearly in forthcoming research of probability that flows from 
discussing informal reasoning toward clarifying fallacious 
reasoning (Chernoff, 2012). Following this trend, there is a 
demand for further studies that focus on fallacious reasoning, 
especially since many of these fallacies still account for both 
correct and incorrect responses. This direction emphasises 
the individual justification and reasoning processes rather 
than their typical normative answers. It also meets the 
renaissance period of psychological research in mathematics 
education, in which there is a need to investigate ‘theories 
about mathematics education and cognitive psychology to 
recognize and incorporate achievements from the other 
domain of research’ (Gillard, Dooren, Schaeken, & Verschaffel, 
2009, p. 13).

Additionally, and about the current literature, few studies 
were reported on PSMTs’ knowledge and reasoning (e.g., 
Batanero et al., 2010; Dollard, 2011; Estrella & Olfos, 2010; 
Ives, 2007; Torres, 2014), and it recommended much more 
research to clarify the essential components in PSMTs’ 
preparation. For a case, within the recent contributed papers 
of the International Conference on Teaching Statistics (ICOTS 
8 [2010], 9 [2014], and 10 [2018]), which is considered a 
platform to exchange ideas and experiences among statistics 
educators under the authorisation of the International 
Association for Statistic Education (IASE), only three papers 
were found. Savard’s (2010) study aimed at interpreting 
primary school students’ probabilistic thinking in some 
artificial gambling situations, and it reported that those 
students practised deterministic reasoning to predict the 
outcome. Besides, understanding variability was highlighted 
as an essential concept in thinking probabilistically. Moreno 
and Cardeñoso’s (2014) study revealed four hieratical levels 
of probabilistic thinking (i.e., deterministic, personalistic, 
uncertain, and contingency), and it confirmed a certain 
distance between teachers’ mental models and the standard 
conceptual models in probability theory. 

While those two papers addressed the characteristics of 
learners’ probabilistic thinking, the third article was provided 
by Primi, Morsanyi, and Chiesi (2014) to develop a scale for 
measuring the basics of probabilistic reasoning ability.

These studies stressed the approach of classification and 
assessment with less reflection on the nature of the reasoning 
process itself, except Savard’s (2010) paper which provided 
a  motive for the current study wherein it is not possible 
to  pretend that a certain conception explains a level 
of  understanding, as remarked earlier. Accordingly, to 
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contribute to the forthcoming literature, this study intended 
to model PSMTs’ reasoning under uncertainty and related 
conceptions, not as a hierarchical order of conceptual 
understanding (e.g., normative or optimal solution), but rather 
through emphasising the way of reasoning per se. From this 
aspect the current study admits two things: (1)  teaching 
probability rarely builds upon authentic contexts  and 
predominantly uses a theoretical approach, in which most 
encountered tasks in both K-12 and teacher education curricula 
incorporate a well-defined quantifiable sample space (e.g., 
tossing a coin, rolling dice); (2) the deficiency of such traditional 
tasks to afford an adequate foundation for learning subjective 
probability (Azcárate, Cardeñoso, & Serradó, 2006; Stohl, 
2005). Given these considerations, the current study has 
adapted an authentic probabilistic situation (in addition to a 
pedagogical activity) to explore PSMTs’ probabilistic reasoning 
(see the method section). 

Further to this, and from a psychological viewpoint, the 
world of personal intuition signifies one source of success or 
failure in teaching since these intuitions determine whether 
learners accept or ignore what they learn. Accordingly, 
Kapadia and Borovcnik (2010) remarked that to think 
probabilistically, it is time to replace Heitele’s (1975) ideas 
with an approach that studies concepts more from a non-
mathematical perspective. Because of that, assessing the 
application of probability models to real phenomena was 
regarded as a crucial skill for interpreting random events 
(Martignon, 2014), particularly in teacher education wherein 
the activities proposed for PSMTs during their preparation 
are generally stereotyped. 

It brings the concept of probability to the notion of calculating 
the relative frequency of occurrences of an event (Musch & 
Ehrenberg, 2002). Accordingly, because teaching probability 
seldom depends on exploring authentic situations, employing 
a realistic context can cultivate analysing PSMTs’ probabilistic 
reasoning. It defines a mode of thinking associated with 
judgments under uncertainty and is related to real-life 
phenomena (Falk & Konold, 1992).

Method
Research design
Since the central goal of this study is modelling PSMTs’ 
probabilistic reasoning and related conceptions, the case 
study design as a form of qualitative research was employed 
to answer its inquiry. Accordingly, the investigator can 
explore a bounded system (PSMTs at the Faculty of Education, 
Tanta University, Egypt) through in-depth data collection for 
reporting a case description and case-based themes (Creswell, 
2009). More precisely, the current study has utilised the 
multiple case study design; it considers the logic of replication, 
in which the inquirer replicates the procedures for each case 
(Yin, 2003). Although qualitative researchers are reluctant to 
generalise from one case to another because the context of 
cases differs, triangulating the gathered data is still necessary; 
it minimises bias and personal effects on the research findings 
(Ticehurst & Veal, 2000).

Therefore, using the  multiple case study design  increases the 
validity of the intended model, which, in this study, represents 
PSMTs’ probabilistic reasoning. As regarded by Weyers, 
Strydom, and Huisamen (2008), during the data triangulation 
process, strong similarities could be viewed as a validation of 
data or conclusions.

Participants 
Based on the case study research processes (Creswell, 2009), 
the following procedures were conducted:

First, a purposive sample of PSMTs who study the 
mathematics education course at the Faculty of Education, 
Tanta University, Egypt, during the academic year 
2018/2019 was selected in light of two criteria. While the 
first criterion signified the participants’ convenience about 
time and willingness to be engaged (Lopez & Whitehead, 
2013), prior knowledge regarding the three principal 
interpretations of probability (i.e., theoretical, experimental, 
and conditional) represented the second standard. The 
reason for such a criterion is clarifying PSMTs’ biases and 
conceptions that persist even under formal education. 
Accordingly, 68 PSMTs were selected to participate in the 
current study, as they studied the three interpretations of 
probability in both pre-university and teacher education. In 
the Egyptian context, learners learn theoretical and 
experimental probability during the primary and middle 
grades, while conditional probability is introduced in 
higher secondary school. Moreover, these concepts have to 
be studied further as a part of a four-year preparation 
programme for mathematics teachers (Elbehary, 2019). 
Table 1 shows characteristics of the study sample (taken 
into consideration that first-year students could not 
participate in this study because they almost have a full 
schedule).

Data collection and analysis processes 
Secondly, two probabilistic situations (i.e., giving birth and 
throwing a die) were offered through a questionnaire 
prepared by the researcher, which should be performed 
within 30 minutes.  This matches what Hancock and 
Algozzine (2006) noted, wherein the examined documents by 
a case study researcher include instruments in the form of 

TABLE 1: The study population and sample.
Variable Number of preservice mathematics teachers who 

were enrolled for the academic year 2018/2019
Total 

1st year 2nd year 3rd year 4th year

Total  
population

107 99 92 102 400

Study sample 
(participants)

Not 
available

32 23 13 68

Basic studied 
concepts of 
probability 

Not 
available

1.	�Basic concepts: Random experiment, sample space, 
event, mutually exclusive and exhaustive events, 
probability of an event, equally likely principle, 
probability function, probability axioms, conditional 
probability, independent events, and Bayes theorem. 

2.	�Random variables (e.g. discrete and continuous 
random variable, density function, mathematical 
expectation). 

3.	�Probability distributions (e.g. Bernoulli, Binomial, 
Poisson, Gamma, Exponential, Beta, Normal). 
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surveys or questionnaires that often provide powerful 
means  to collect data regarding the study questions. Yet, 
before listing the questionnaire items, the following section 
describes the process of selecting the appropriate contexts 
within which PSMTs’ probabilistic reasoning can be 
modelled. 

Acknowledging that PSMTs in this study are being 
prepared to teach primary and lower secondary pupils, 
the implemented activities of probability, provided by the 
national textbooks for these grades, were characterised 
inductively based on the context. In other words, 
the  researcher tried to consolidate the probability tasks 
of  similar circumstances together. Consequently, seven 
different settings were inferred (see Table 2).

From Table 2, it is apparent that the school curriculum 
emphasises traditional mathematical activities. Hence,  the 
activity of throwing a die was included in the study 
questionnaire. Nonetheless, because these activities cannot 
provide an adequate foundation for defining subjective 
probability, as noted earlier, another context was utilised. For 
this, and in light of previously inferred probability contexts, a 
survey was prepared (see the Appendix) and administered to 
the study participants.  They were asked to determine the 
appropriateness of each context to address each probability 
interpretation (i.e., theoretical, experimental, and conditional), 
knowing that some contexts can be adapted to approach 
more  than one concept. As a result, PSMTs judged that all 
settings could be employed to address multiple probability 
interpretations. Nevertheless, the contexts of life expectancy, 
gender, and school experiences signified (1) probabilistic 
circumstances where the subjective interpretation strongly 
exists (i.e., around 25%, 22%, and 27%), and (2) balanced 
choices across the probability interpretations (see Figure 1).1

Admitting that (1) a clear sample space, (2) easily identified 
chance factors, and (3) strong cultural prescription towards 
viewing the phenomena statistically are the criteria for 
judging the difficulty of the reasoning process (Nisbett, 
Krantz, Jepson, & Kunda, 1983), randomising devices  (e.g., 
the activity of throwing a die) are easy to reason. Nonetheless, 
in the social domain (e.g., gender), the sample space is often 
obscure, and repeatability is hard to imagine; thus, life 

1.Note that the total number of the reviewed probability tasks equals 106. This is all 
the activities that have been raised within the lesson content of both primary and 
lower-secondary grades, from Grade 3, when probability is first introduced, until 
Grade 9.

expectancy and gender were judged as difficult contexts to 
reason. Still, the gender context appears within the curriculum 
more than the life expectancy context (see Table 1). As a 
result,  the activity of giving birth was preferred to be 
considered in the questionnaire. Therefore, to address PSMTs’ 
reasoning under uncertainty, they were asked to answer the 
following items: 

•	 Item A: Knowing that there is a pregnant woman 
�� �How can you determine the probability of giving 
birth to a girl? 

�� �Are there any conditions for why you have chosen 
the proposed ratio of probability? 

•	 Item B: How will you explain to your prospective learners 
the various strategies that one can employ to determine 
the probability of getting 5 in a random experiment of 
rolling a die one time?

Lastly,  after the participants responded to the proposed 
questionnaire, their interpretations were collected and coded 
by NVivo software. In detail, the coding procedures were 
conducted as explained below

At first, the obtained data from the study questionnaire were 
textual, with some mathematical explanations in most cases. 
For example, about the first item, some PSMTs noted that: 
‘The probability of giving birth to a girl = P (G) = 1/2, since 

TABLE 2: The probability contexts within the Egyptian school curriculum.
Identified context Example Number of activities1 Total 

Primary level Lower secondary level n %

Environmental issues Rain, sun, day and night, weather forecast 5 0 5 4.7
School experiences Grades, success, results of a competition 5 4 9 8.5
Gender Boys and girls, giving birth 4 1 5 4.7
Life expectancy Life expectancy and insurance concerns 1 2 3 2.8
Preferences Family visits, preferred food, language, sport, newspaper, transportation 4 5 9 8.5
Manufacturing Production and feasibility study 1 8 9 8.5
Quasi-pedagogical Draw a ball, toss a coin, drop a pin, roll a die, span a spinner, draw a card of 

two-digit numbers, drop a stick
40 26 66 62.3

Total number 60 46 106

PSMT, preservice mathematics teachers.

FIGURE 1: Preservice mathematics teachers’ determination of the probability 
context.
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the sample space (S) = {boy, girl}, and the number of 
favourable outcomes = n (G) = 1’. Similarly, for the 
second item, they responded: ‘The probability of getting five 
= P  (5)  = 1/6, because S = {1, 2, 3, 4, 5, 6} and n (5) =1’. 
Furthermore, two rounds of coding processes were employed: 
(1) An inductive cycle started by investigating PSMTs’ 
responses to the first item. This is argued by Linneberg and 
Korsgaard (2019) as there is a strong tradition in qualitative 
research concerning developing codes directly from data 
rather than using theoretical or prior understandings of the 
researcher. (2) A deductive cycle was used to develop the 
inductive probabilistic reasoning categories that worked 
during this cycle as a lens for examining the answers to 
the  second item (Miles, Huberman, & Saldana, 2013). Such 
procedures were handled case by case, starting with analysis 
of  the responses of second-year PSMTs, extending to 
third-year PSMTs, and ending with fourth-year PSMTs, as 
recommended in multiple case study design. During the first 
cycle of coding, which is inductive, using NVivo, the 
following steps were followed (Thomas, 2006): 

•	 Determine a label for each node that is a short phrase to refer to 
it. For example, there are no specific conditions to 
determine the probability, or there are some conditions 
like the number of sample space elements, knowing the 
biological or genetic state, admitting miscarriage as a 
possible result, knowing the previous babies’ gender, or it 
is a matter of Allah’s will.

�� Describe the scope of each node. For example, the node of no 
conditions identified PSMTs who agreed that there are no 
restrictions to determine the probability, it is just a matter 
of mathematical calculation of the number of favourable 
cases (one case: girl) divided by the number of all 
outcomes (two: boy and girl). Additionally, if PSMTs 
acknowledged some criteria to limit the probability, these 
criteria were categorised based on their nature (source) 
and focus point (i.e., determine the likelihood or approve 
the outcome). For a case, the assigned responses to ‘it 
depends on the number of sample space elements’ node 
have a numerical nature and probability emphasis. 
Nevertheless, if the criterion was not mathematical (e.g., 
using baby sonar, observing the woman’s physical 
appearance), the response was committed to another 
distinct node.

�� Illustrate some examples of texts associated with nodes.  For 
instance, the typical response for PSMTs who were 
assigned to the node ‘it depends on n(S)’ was: ‘if S has 
two elements, then P(G) = 50%; similarly, if S has three 
outcomes, P(G) = 33.3%’. Moreover, for the non-
mathematical justifications, although PSMTs provided 
some percentages to determine the probability of giving 
birth to a girl, they emphasised several criteria that may 
alter these percentages. As for the node of the ‘using baby 
sonar’, PSMTs reported 50% to describe the probability; 
however, they declared that knowing the results of baby 
sonar could change this probability.

�� Create links among several nodes. During this stage, all 
emerged codes were restructured into two broad 
categories of (1) probability-focused and (2) outcome-

oriented. The probability-focused group was further 
branched into (1) mathematically oriented that indicates 
the PSMTs who emphasised the mathematical rules 
(e.g.,  50% because of calculation procedures), and (2) 
subjectively oriented that denotes who displayed 
individual non-mathematical criteria; still, their focus is 
how to estimate the probability based on these criteria.

•	 Incorporate the emerged categories into a model. Following the 
emergence of the three groups, the principal interpretations 
of probability (i.e., theoretical, experimental, and 
conditional) were utilised as a framework in which these 
categories can be consolidated and theorised; that helps to 
model PSMTs’ probabilistic reasoning (see the results 
section).

This detailed description helps ensure transparency in such a 
qualitative study; it reflects how the study findings are linked 
to the collected data (Elo et al., 2014). Furthermore, the second 
coding cycle, which was operated deductively, had intended 
to explore how PSMTs responses persisted in a different 
context by which study results could be further verified. 
Thus, through implementing the backward direction, PSMTs’ 
responses to the second item (i.e., throwing a die) were 
analysed in light of the emerged categories from the first 
coding cycle. Nevertheless, in a few cases, there were some 
discrepancies between PSMTs’ responses to both items. Such 
cases were highlighted and are discussed within the results 
section.

Results and discussion 
To respond to the study question (i.e., How do PSMTs 
reason under uncertainty?), PSMTs were motivated to state 
their conditions and relevant criteria in which their 
estimation can be changed. Therefore, to capture the 
characteristics of their probabilistic reasoning, the giving 
birth activity was first discussed with them in this manner: 
Suppose a pregnant woman asks you to help her estimate 
the probability of giving birth to a girl? What do you think 
of such a situation? Do you have any criteria or standards to 
make a judgment concerning the probability? However, the 
task of throwing a die didn’t need more clarification since 
PSMTs used to practise this. Accordingly, the participants 
employed different ways of reasoning that are categorised 
as follows:

•	 Mathematically oriented thinkers (see Table 3)
�� Subjectively oriented thinkers (see Table 4)
�� Outcome-oriented thinkers (see Table 5).

Characteristics of mathematically oriented 
thinkers [M = m and m* reasoning] 
The reasoning for both type  m  and  m* (M thinkers) has a 
common feature of relying on theoretical probability.  PSMTs 
modelled the given situation through the notion of S and the 
favourable outcome G for the giving birth activity. Similarly, 
49 PSMTs shaped the experiment of throwing a die using a 
sample S that contains six different possibilities with the 
favourable outcome being 5.
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In this regard, M thinkers (both m and m*) understood the 
idea of variability, wherein the result is not determined, but 
varies depending on the possible favourable cases (i.e., 
elements of S) (Garfield & Ben-Zvi, 2005). M thinkers also 
maintained the equiprobable bias  (Lecoutre & Fischbein, 1998; 
Savard, 2014), since they judged the possibility of giving birth 
to a girl to be equal to a boy; furthermore, when they considered 
twins as a possible outcome, they supposed that the probability 
of giving birth to twins is as same as boy or girl.2

Holding the  equiprobable bias  hindered M thinkers from 
reflecting on the base rate frequencies (i.e., the actual gender 
distribution). Accordingly, their responses to the problem of 
giving birth indicated the insensitivity to the prior probability of 
outcomes bias (Tversky & Kahneman, 1974). The respondents 
ignored that the possibility of giving birth to a girl is slightly 
less than a boy as the actual gender distribution in Egypt 
shows the ratio between boys to girls equals 1.06 at birth 
(NationMaster, 2021). Certainly, PSMTs are neither required 
nor expected to give a specific correct percentage for the 

2.Note that: P = probability, S = sample space, G = girl, B = boy, and A = the favourable 
outcome.

gender distribution throughout the country, but should 
preferably indicate the base rate frequency as a necessary 
factor to consider when judging under uncertainty. Hence, 
the notion of the population should be regarded to estimate 
a reasonable value.

For the second activity,  M  thinkers did not confirm the 
condition of equiprobability, which is required to utilise 
Laplace theory. While the complexity of physical circumstances 
(e.g., air resistance, speed) illustrates why individuals cannot 
predict whether or not a particular outcome will occur when 
rolling a die (Stohl, 2005), the theoretical probability considers 
one approach that embodies such complexities. Accordingly, 
although PSMTs may think of this condition as just a premise 
for all chance games, there was no explicit information 
concerning the die regularity.

Such a result resembles Chiesi and Primi’s (2009) findings 
that indicate the prevalence of equiprobability and insensitivity 
to the prior probability biases among college students.

Chiesi and Primi’s (2009) study participants exposed 
the  equiprobability regardless of the actual proportion 

TABLE 5: Outcome-oriented thinkers (o, o*, and o** reasoning).
Variable Type O thinkers (o, o*, and o**)

The problem of giving birth The task of throwing a die

We can know that the woman will give birth to a girl through We can get the number 5 if The probability to get the number 5

o o* o* o**
Typical response checking the outcome of the 

delivery process. Accordingly, if the 
woman already gave birth to a boy 
or twins, or she had a miscarriage, 
or passed away during the delivery 
process, the probability will change 
from 1/2 to 0

observing the 
woman’s bodily 
appearance 
(e.g. belly shape)

recognising whether this 
woman gives birth to a 
certain gender always, 
or not; if yes, and she 
usually gives birth to 
girls, the probability will 
be higher than 50%

the die was controlled, an 
expert person experimented, 
or the number of trials has 
been increased

depends on the ratio between the 
number of 5 repetitions and the 
total number of many identical 
trials; and, if the experiments were 
increased, the frequentist 
probability meets the theoretical

(2nd, 3rd, 4th) (2, 1, 0) = 3 (0, 0, 2) = 2 (2, 0, 0) = 2 (0, 6, 2) = 8 (0, 6, 5)
3 cases (2, 0, 2) = 4 cases 8 cases 11 cases 

Total 7 cases 19 cases 

TABLE 3: Mathematically oriented thinkers (m and m* reasoning)2.
Variable Type M thinkers (m and m*)

The problem of giving birth The task of throwing a die

m m* m m*
Typical response P equals 50%, without certain 

conditions, because S contain two 
events that are B and G. Then, 
mathematically, S = {B, G}, P (G) = 
n (G)/ n (S) = 1/2 = 50%

It depends on the number of events in S. For example, if 
S = {B, G}, then P(G) = 50%. On the other hand, if S = {B, G, 
twins}, then P(G) = 33.3%. Hence, based on the stated 
hypotheses, particularly the number of elements in S, the 
expected probability will be varied (increased or decreased)

S = {side1, side 2, side 3, side 4, 
side 5, side 6}, and A = side 5, 
Then P (A) = n (A) / n (S) = 1/6 

S = {1, 2, 3, 4, 5, 6} and 
A = {5}. Then, P (A) = n 
(A) / n (S) = 1/6

(2nd, 3rd, 4th) (10, 4, 1) = 15  (4, 0, 1) = 5 (11, 0, 2) = 13 (21, 11, 4) = 36
Total 20 cases 49 cases 

TABLE 4: Subjectively oriented thinkers (S = s, s*, and s** reasoning).
Variable The problem of giving birth The task of 

throwing a dieThe probability of giving birth to a girl changes depending upon

Type S thinkers (s, s*, and s**)

s s* s**

Typical response our information 
about baby sonar 
results 
(ultrasound scan) 

having information 
about the woman’s 
previous babies’ 
gender

Allah’s will
‘Insha’Allah’

our information regarding the possible outcomes, 
for example considering miscarriage or 
spontaneous abortion as a possible outcome, or 
knowing that the woman may give birth to twins 
changes the probability from 1/2 to 1/3

understanding the biological or 
genetic state of the woman 
(e.g. the issues of X and Y 
chromosomes)

Null

(2nd, 3rd, 4th) (1, 3, 2) = 6 (1, 0, 0) = 1 (0, 1, 1) = 2 (10, 13, 5) = 32 (2, 1, 1) = 4 (0, 0, 0) = 0
(2, 3, 2) = 7 (12, 14, 6) = 32

Total 7 cases 2 cases 32 cases No cases
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(i.e., ratio of green and blue balls). This mirrors M thinkers 
wherein the  equiprobable bias  hindered them ensuring the 
prior probability of giving birth to a girl based on the 
whole population; likewise, speculating the die regularity 
before determining the chance of obtaining 5. Yet, M 
thinkers diverged between type m and m*, in that there is 
a slight difference between them in terms of the essence 
of equiprobable bias.

On one hand, type  m  respondents thought that random 
events are naturally equiprobable, even when they are not 
(Lecoutre, 1992). This is perhaps related to the representativeness 
heuristic: it denotes judging the likelihood of an event 
according to how well such event represents some aspects of 
the parent population or how it matches the system that 
generated it, which is the case of m  thinkers (Kustos & 
Zelkowski, 2013; Pratt & Kazak, 2018). They focused on the 
random process, which appeared clearly in their description: 
‘both situations imply random experiments, and [the] 
outcomes have the same chance to occur, regardless of any 
conditions’.

In detail, for the activity of throwing a die, 13 cases were 
assigned to the  m  thinkers category. They strengthened 
the physical structure of the die itself, so the numbers here 
symbolise its various facets, and the favourable outcome of 
5 means one side among six sides. Although the respondents 
understood the meaning of numbers as a symbolisation of 
the die facets, they did not confirm die regularity, as noted 
first. One possible reason for that is the  representativeness 
heuristic, which prevented PSMTs from confirming the 
theoretical probability assumptions (Laplace theory axioms) 
and shaped their perception of randomness. Such a link 
between students’ understanding of randomness and their 
perspectives on probability was highlighted by Ives (2007). 
That is, m  thinkers who modelled the situations through 
theoretical probability believed that randomness is bounded 
to  equiprobability. As reported by Batanero, Green, and 
Serrano (1998):

in the classical conception of probability we would say that an 
object (or an event) is a random member of a given class if there 
is the same probability for [it as there is for] any other member of 
its class. (p. 115)

On the other hand, type  m*  responses reflect a more 
abstract mindset; they attempted to overgeneralise applying 
the  theoretical probability to all situations, whether these 
situations are realistic (e.g., giving birth) or technical (e.g., 
simulators). Consequently, the equiprobable bias in type m* was 
inherited in the  overgeneralization heuristic:  it directed their 
thinking towards interpreting the giving birth problem like 
tossing a coin or drawing a card. Accordingly, although 
m*  thinkers admitted the limitations of S to restrict the 
probability of giving birth to a girl, they were reluctant to 
connect these mathematically stated limitations with the 
actual circumstances that may occur in reality.

Such manner of reasoning was also scrutinised in the second 
activity, in which 36 PSMTs created S with six possible 

outcomes (1, 2, 3, 4, 5, and 6) and accordingly determined P 
(5) = 1/6 (see Table 3). They sharpened the assigned numbers 
to the die facets, in which the number 5 indicates one possible 
outcome among six possibilities. Thus, again,  m*  thinkers 
maintained  abstract mathematical reasoning.  Although such 
reasoning allowed them to acknowledge the sample space 
elements, they could not perceive these elements as signs of 
the die facets, which might or might not be symmetrical. 
Consequently, some m*  thinkers further reported that for 
any random experiment with six possible outcomes, every 
event has one possibility among them to occur.

Admittedly, type m* reasoning is more relevant to Fischbein’s 
(1987) determination of secondary intuitions emerged 
because of formal education to replace the primary pre-
existing intuitions. It forms a powerful tool that allows 
solving a problem without grasping all technical details 
(Borovcnik, 2016). That causes various obstacles for the 
application since ‘the constituents of the modelling process 
are wider and also comprise – beyond mathematics – 
knowledge of the context as well as criteria for assessing how 
well models match a situation’ (Borovcnik, 2016, p. 1494).

Characteristics of subjectively oriented thinkers 
[S = s, s*, and s** reasoning] 
Interestingly, the category of  subjectively oriented thinkers, 
noted by S and including s, s*, and s**, which matches 
nearly 60% (41 cases from 68) of PSMTs’ reasoning in the 
context of giving birth, did not emerge in the task of 
throwing a die. Such disappearance pulls us back to what 
was discussed earlier regarding the fruitfulness of the 
realistic contexts in displaying subjective probability.  For 
illustration, the die regularity, numbers assigned to its sides, 
or knowledge of the person who manipulates the die were 
not reviewed by the respondents. Through such information, 
they can update their knowledge and further the probability 
when these additional information is recognised (Kvatinsky 
& Even, 2002).

The common trait among s, s*, and s** reasoning is that all 
are rooted in the  subjective interpretation, wherein PSMTs 
utilised their personal information to determine the 
probability of giving birth to a girl. More precisely, to explain 
the factors that may alter their judgment. In this regard, S 
thinkers stressed the variability of the outcomes: the outcomes 
may vary depending on what they stated as contingencies 
(see Table 4). Therefore, their responses were expressed in the 
‘it depends’ form, which is relevant to Bayesian reasoning 
that allows updating our estimation by processing new 
information (Batanero et al., 2016; Dollard, 2011; Sharma, 
2016). Despite such commonality,  s  thinkers differed from 
both  s*  and  s**  in understanding the concept 
of  randomness  which represents a crucial element to reason 
under uncertainty. In type s, the respondents stated that 
using an ultrasound scan might change the expected 
probability from 50% to 100% for sure. This means that they 
tend to change their estimation to certainty and deny 
randomness, which indicates the prediction bias (Briand, 
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2005; Savard, 2008) since PSMTs’ prediction had the meaning 
of exact prediction. 

Alike this in omitting the notion of randomness that demands 
independence without correlation (Dessart, 1995; Green, 
1993), one PSMT in the same category correlated the previous 
babies’ gender with the newborn’s gender. That is, past 
information provides a tool to predict the new outcome.

Yet, type s* and s** were not assigned to the same category. 
Although PSMTs in both categories maintained the notions 
of randomness and variability, the nature of the reasons was 
quite different. While type s** criteria and stated conditions 
remained cognitive and practical (see Table 4), in type s*, the 
respondents were inspired by the religious conception  of 
Allah’s will. Nevertheless, emphasising this conception did 
not restrict them from determining a probabilistic percentage. 
Also,  s* thinkers  adopted Allah’s will not as a cause that 
influences the baby’s gender, but rather to reveal some out-
of-control circumstances that may alter the predicted 
outcome. 

Accordingly, as two PSMTs reported, the probability of 
giving birth to a girl equals 50%; still, we cannot certainly 
anticipate a baby girl because it is a matter of Allah’s will. In 
this matter, it is worthwhile to mention that animism 
attribution of phenomena to God was defined in multiple 
studies as a personalist interpretation (Amir & Williams, 1999; 
Garfield & Ben-Zvi, 2005; Kissane & Kemp, 2010; Watson & 
Moritz, 2003; Watson & Kelly, 2004). However, in this study, 
this interpretation has been highlighted to be a certain level 
of probabilistic reasoning that needs more explanation.

In the viewpoint of Chassapis and Chatzivasileiou (2008), 
mathematics education and knowledge are culturally 
situated, so that they either implicitly or explicitly involve 
social and cultural values. Accordingly, beyond the 
mathematical aspect of each construct, there is another aspect 
associated with the practice of that construct in daily life. 
That explains why one mathematical concept can be 
valued  in  one context and de-valued in another. In this 
sense,  the influence of sociocultural factors on the 
individuals’ conceptions of probability was regarded (Larose, 
Bourque, & Freiman, 2010; Sharma, 2016). In Chassapis and 
Chatzivasileiou’s study, two groups from Jordan (Muslims) 
and Greece (Christians) were asked to attribute the 
unexpected event to one of chance, probability, fate, or God’s 
will. The study revealed interesting findings, which support 
the claim regarding type  s*  reasoning: most Jordanian 
students assigned the unpredictability to God’s will 
compared to the chance for the Greek students. Hence, 
Chassapis and Chatzivasileiou declared that because of the 
characterisation of the Jordanian context by the Muslim 
doctrine that affirms God’s controllability of life, students’ 
responses were accompanied by the phrase ‘Insha’Allah’ (if 
God wished it).

Such findings mirror the case of type s* thinkers, where the 
respondents first determine the probability of giving birth to 

a girl; also, they added the term ‘Insha’Allah’ to reflect the 
limitedness of human beings in giving an exact 
prediction. Besides, s* responses were judged to be a certain 
level of probabilistic reasoning and not just a personalist 
interpretation (or a belief). While the PSMTs in the present 
study were asked to determine the probability and to reflect 
the circumstances that may alter their judgment, the 
participants of Chassapis and Chatzivasileiou’s (2008) study 
were directed to attribute the cause of an unexpected event to 
one of chance, probability, fate, or God’s will. This describes 
why their students’ selection of ‘God’s will’ was assessed as 
a causality. However, s* thinkers did not operate the concept 
of Allah’s will as a cause of the baby’s gender, but rather as 
one factor that may change the probability.  Thus, they 
maintained their understanding of randomness without 
dependence or certainty and the variability by which the 
outcome may vary in terms of God’s will. That is explicitly 
detailed by Chassapis and Chatzivasileiou as follows: ‘Beliefs 
in God’s will and probabilistic thinking may be compatible in 
some cases leaving space to the formation of chance and 
probability conceptions’ (p. 204). This indicates how our 
religious beliefs influence conceptions of probability and 
probabilistic reasoning. 

Characteristics of outcome-oriented thinkers 
[O = o, o*, and o** reasoning] 
Type  o, o*,  and  o**, denoted by O, respondents are 
the  outcome-oriented thinkers. They tried to handle the 
experimental probability to answer the inquiries. Although 
such utilisation involved several biases when PSMTs were 
asked to reason in the giving birth context, which caused the 
emergence of type o and o* categories, it was much better in 
the task of throwing a die. Because of that, the sub-category 
of type o** thinkers, which substantially deviates from o and 
o*, emerged only during the analysis of PSMTs’ responses to 
the second task. In that sense,  o**  resembled o and o* in 
manipulating the experimental probability; nonetheless, 
o**  expressed a clear understanding of such a concept 
without biases. These discrepancies can be further detailed as 
follows.

First, type o and o* reasoning define PSMTs who focused on 
the favourable outcome (i.e., the exhibited outcome in the 
question) more than the probability. In the giving birth 
context, they understood the question as if it was: when 
would a woman give birth to a girl? (How to know, or under 
what circumstances?). Hence, they did not discuss the event 
of a baby girl as a possible event, but rather as a precise event 
that already occurred, and we are examining its causes (i.e., 
why has or has not it happened?).  Accordingly, their 
responses assumed this woman is going to give birth to a girl 
if something appeared; similarly, if this thing did not happen, 
another gender is expected, in which case they attributed the 
phenomenon of giving birth to a girl to some causes. For 
instance, if the woman’s belly shape is circular, she will give 
birth to a girl; likewise, if her belly shape is not circular, she 
will not give birth to a girl. Because of that, PSMTs’ predictions 
were evaluated to be right or wrong, and their responses took 
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the form of yes-no decisions concerning whether an outcome 
will occur in a particular case (i.e., the next expected gender 
will be a girl or not) (Batanero & Sanchez, 2005; Konold, 1989; 
Savard, 2014).

In the second activity, o and o* respondents emphasised the 
outcome, number 5 itself, rather than its probability. 
Accordingly, the question was interpreted as how to get 
number 5: by what method, or how many trials are required 
to obtain number 5? Consequently, as shown in Table 5, eight 
cases explained their strategies to get a favourable outcome 
of 5. In detail, one PSMT reported that the experimenter 
could control the die, which is similar to the way many 
experts perform in Dominoes games. Another remarked that 
number 5 would certainly appear on the first try if the die has 
been designed to carry number 5 at all sides. Besides, two 
other PSMTs declared that ‘it is impossible to get number 5 
when throwing the die once’. One of them extended his 
answer by stating ‘then, we have two possibilities; either (a) 
to increase the number of trials, or (b) to cheat the experiment 
and control the die by hand’. The other continued with ‘the 
outcome cannot be determined in prior, rather after 
experimenting the die’. Although both responses tacitly 
indicated understanding the experimental probability as a 
long-term series of events, PSMTs’ intention was not 
assigning the probability but rather getting the number 
5.  Also, four more PSMTs thought of the required number of 
trials at which number 5 is to appear. As they stated, it may 
arise at the first, second, or after six attempts.

Such exhibited reasoning of o and o* mirrors Konold’s (1989) 
description of outcome-oriented thinkers. Instead of 
specifying probability, which reflects the distribution of 
occurrences in a series of events, PSMTs predict the result of a 
single trial. Accordingly, as detailed, instead of determining 
the probability of (1) giving birth to a girl or (2) getting 
number 5, they explained the circumstances and strategies to 
obtain such favourable outcomes. Once again, the prediction 
bias emerged in o and o*  responses. Yet, it was wielded by 
s  thinkers differently. Although the term ‘exact’ referred to 
the probability that was judged by s  thinkers precisely, 
without uncertainty (see Table 4), for  o  and  o*  thinkers, it 
indicates the outcome. Hence, while the attributed property 
‘exact’ defines the probability in type  s, it describes the 
outcome in types o and o*. 

Expressly, in the task of throwing a die, some PSMTs realised 
the term ‘once’, meaning they cannot rely on the experimental 
probability unless the trails were increased. Still, they 
exposed their alternatives, including repeating the 
experiment several times to obtain number 5 (not to use the 
frequentist approach).  Such an understanding of ‘once’ is 
operated based on the prediction bias: it oriented them towards 
classifying the sample space into (1) the favourable outcome 
and (2) all other events to satisfy their yes-no decision. For 
instance, if the woman›s belly shape is rounded, she will give 
birth to a girl (i.e., the favourable outcome); if not, any other 
event will occur (e.g., boy, twins, miscarriage).

Still, and only in the context of giving birth, there is a clear 
difference between type o reasoning compared to o* in terms 
of understanding of the notion of probability. In 
type o responses, PSMTs seem not to understand probability 
as quantification of our information regarding unknown 
phenomena. They discussed the favourable outcome of ‘girl’ 
not as a possible expected event but rather as if the random 
process had already happened, and its results became 
known.  Accordingly, they stated that if the woman had a 
miscarriage during the delivery process, the probability 
would decrease from 50% to 0 (see Table 5). Such reasoning 
neglects that after the delivery process, the situation will not 
be probabilistic anymore at which point there is no purpose 
for the prediction itself. In contrast, although type o* thinkers 
understood the idea of prediction, they were less conscious of 
the distinction between causality and conditionality, wherein 
distinguishing both concepts has been recognised as a crucial 
determinant to reason probabilistically (Batanero et al., 2016). 
While dependence in probability characterises a bi-directional 
relation – if an event B is the cause of another event A, then 
whenever B is present, A is present too (i.e., P(A/B) =1) – the 
two directions included in conditional probabilities have a 
distinct connotation from a causal viewpoint (Batanero et al., 
2016; Díaz, Batanero, & Contreras, 2010). For instance, 
although the conditional probability of having a baby girl to 
having a positive result on a sonar test is causal, the reversed 
direction from a positive diagnostic of sonar to having a baby 
girl is only indicative. Consequently, type o* thinkers share 
the causal conception since they assumed a causal relationship 
at which the conditioning event B is the cause and A is the 
consequence (Gras & Totohasina, 1995; Savard, 2014).

Interestingly, on the other side of both o and o*, the category 
of type o** thinkers has emerged only in PSMTs’ responses to 
the task of throwing a die. It denotes an adequate utilisation 
of the  experimental probability, as noted at the beginning. 
Type  o**  thinkers focused on the probability, which, for 
them, remains a posterior judgment since it is necessary to 
gain data (frequencies) about the outcomes for estimating the 
relevant probability (Chernoff, 2008). Accordingly, they 
admitted the validity of the experimental interpretation to 
fulfil the situation of throwing a die if and only if the 
experiment has been repeated many times. 

Furthermore, their responses indicated an awareness of  the 
law of large numbers, in which they recognised the term ‘once’. 
For example, two of them reported that:

the probability of getting number 5 equals 1/6 through 
experimentations; yet, we cannot rely on one trial, rather the 
number of trials should be increased to make sure of the results 
and to get a more precise probability [i.e., theoretical probability].

Although such argumentation reflects an understanding of 
the variability wherein the calculated percentage varies 
depending upon the frequencies, both PSMTs still reported 
that the probability would be 1/6. They either were keeping 
the theoretical probability in their mind to avoid ambiguity 
(Stohl, 2005) or they misused probability language, so 
instead of reporting that the probability may approach 1/6 
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after a large number of identical trials, they just wrote: it will 
equal 1/6.

Additionally, nine PSMTs in this category did not specify any 
percentage, but were concerned about the ratio of number 5 
frequencies to the conducted trials. According to them, 
manipulating the experimental approach leads to different 
percentages that express the likelihood of getting 5. They 
entirely understood the circumstances of the given situation; 
hence, the probability to obtain number 5, for them, depends 
on how many 5s will appear in a large number of identical 
trials. They also further explicitly explained that as much as 
the number of experiments increased, the experimental 
probability approximates the theoretical percentage (i.e., the 
law of large numbers).

Conclusion 
In conclusion, PSMTs’ reasoning under uncertainty has been 
modelled into three major categories: Mathematically [M], 
Subjectively [S], and Outcome-oriented thinkers [O]. Yet, the 
exposed reasoning differs based not only on the individuals’ 
knowledge but also on the context; that is exhibited clearly in 
Figure 2, which represents PSMTs’ probabilistic reasoning in 
two different situations (i.e., giving birth and throwing a die).

As displayed in Figure 2, most PSMTs employed subjective 
reasoning when they were asked to speculate the problem of 
giving birth compared to the mathematical manner in the 
task of throwing a die. This can be interpreted in terms of two 
essential issues.

The first issue denotes PSMTs’ familiarity with handling the 
traditional activities through manipulating the theoretical 
probability. Nonetheless, several biases were exposed when 
PSMTs employed this interpretation. For example, 
equiprobability and insensitivity to the prior probability of 
outcomes were exhibited in the context of giving birth when 
PSMTs judged the possibility of giving birth to a girl to be 
equal to a boy (or twins) and dropped the gender ratio at 
birth in Egypt.  Similarly, they were reluctant to confirm the 
die regularity before operating Laplace theory in the task of 
throwing a die. Furthermore, the grounds under such 
biases  stayed different between  m  and  m*, the two sub-
categories of  M. On one side,  m  thinkers were influenced 

by  the  representativeness heuristic:  it oriented them to 
emphasise the random process and hindered verification of 
the required assumptions of theoretical probability.  On 
the  other side, equiprobable bias  in type  m*  was inherited 
in  the  overgeneralisation heuristic wherein the  theoretical 
probability was overgeneralised to both situations (e.g., 
realistic and technical).

The second issue signifies the value of authentic contexts to 
display the subjective facet of the probability that implies a 
degree of belief in the truth of some premises. Although such 
interpretation did not appear in the context of throwing a die, 
it represented the majority of PSMTs’ reasoning in the giving 
birth problem since around 60% of the participants were 
committed to type  S  thinkers and diverged among  s,  s*, 
and s**. Yet, this reasoning involved some relevant biases. For 
instance,  s  thinkers shared the  prediction bias  that oriented 
them towards changing their estimation to certainty and 
denying randomness. Accordingly, in some cases, their 
prediction had the meaning of exact prediction; in other 
cases, their responses designated a correlation in which past 
information provides a tool to predict the new outcome. On 
the other side, type  s*  and  s**  thinkers maintained the 
notions of randomness and variability. However, they 
attributed the variability of the random event to different 
circumstances. 

Such circumstances varied between utilising realistic 
conditions (e.g., X and Y chromosomes, baby sonar) 
for  s**  thinkers, compared to sharing the religious 
conception of Allah’s will for s*. In this regard, the emergence 
of Allah’s will  notified one interesting finding that was 
interpreted, in this study, as a certain level of probabilistic 
reasoning. This judgment was grounded in the sociocultural 
influence on the individuals’ probability knowledge and 
reasoning (Chassapis & Chatzivasileiou, 2008; Larose et al., 
2010; Sharma, 2016), within Bishop’s (1988) perspective on 
mathematics education as a cultural induction at which 
students’ values remain an integral part of teaching and 
learning.

In addition to  M  and  S, another manner of reasoning 
emerged in PSMTs’ responses to both situations and 
was  termed type  O  thinkers. This reasoning involved 
manipulating the  experimental probability with some 
biases in type o and o* compared to a clear understanding 
of this concept for o** thinkers.

On one hand, type  o  and  o*  responses typically mirror 
Konold’s (1989) description of outcome-oriented thinkers. 
They focused on the favourable outcome more than its 
probability and understood the inquiry as if it was: when 
will this favourable outcome appear, and how to know or 
under what circumstances? Accordingly, their predictions 
were evaluated as right or wrong, and their responses took 
the form of yes-no decisions. Thus, instead of specifying 
probability, which reflects the distribution of occurrences in 
a series of events, PSMTs predict the result of a single trial. 

PSMT, preservice mathematics teachers.

FIGURE 2: PSMTs’ probabilistic reasoning manners in two different contexts.
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Also, although both o and o* thinkers decided to adapt the 
experimental probability as a posterior judgment, they 
failed to perform it appropriately because of the prediction 
bias. This emerged once again, yet in a different manner, 
with type  s thinkers. The exact prediction referred to the 
probability for s  thinkers and the outcome for both 
o  and  o*  thinkers. Moreover,  o  thinkers did not fully 
grasp  the probability that defines a quantification of 
our  information regarding unknown phenomena. On the 
contrary, o* thinkers were less conscious of the difference 
between causality  and conditionality; they assumed a 
causal  relationship between the conditioning event and 
the preferable outcome (i.e., causal conception). 

On the other hand, besides both  o  and  o*, o**  thinkers 
reflected an adequate utilisation of the  experimental probability. 
Accordingly, most o** thinkers did not specify any accurate 
percentage; instead, they were more concerned about the 
ratio of frequencies to the conducted trials. They further 
explicitly explained that as the number of experiments 
increased, the experimental probability approximates the 
theoretical percentage (i.e., the law of large numbers).

Indeed, these findings provided detailed insights into PSMTs’ 
probabilistic reasoning that may work as learning trajectories, 
especially considering the inadequate preparation of PSMTs 
to teach probability, as noted in various studies. This 
acknowledges Batanero et al.’s (2004) recommendation 
regarding the necessity to consolidate a discussion on 
heuristics and biases within specific courses relevant to the 
didactics of probability. It further matches the current 
renaissance period of psychology research in mathematics 
education, which has been tacitly handled, in this study, 
through discussing PSMTs’ knowledge of probability from a 
psychological perspective (i.e., probabilistic reasoning). Also, 
it incorporated a unified framework that models several 
probability conceptions in one schema (i.e.,  M,  S, and  O), 
which may address the contested area regarding the nature 
of probability (i.e., mathematical and philosophical aspects). 
Further to this, from a national perspective, these results 
shed light on PSMTs’ probability knowledge and reasoning 
under the umbrella of statistics education. Perhaps this 
responded to Innabi’s (2014) recommendation regarding the 
need to stimulate the study of statistics in the Arab world, in 
which very little research has been conducted. Besides, it 
may activate PSMTs’ awareness of their conceptions and 
biases that help them interpret similar biases in their 
prospective students’ reasoning. Such a process is closely 
related to enhancing their Knowledge of Content and 
Students (KCS), which considers significant knowledge for 
the PSMTs to acquire.

Finally, there are some precautions about the results’ 
interpretation; in other words, the study findings should not 
be generalised without considering certain conditions. One 
essential regard is the influence of the sociocultural factors in 
which the participants’ values, an integral part of teaching 
and learning, need to be considered. Consequently, what can 
be acceptable in one context cannot be in another (e.g., Allah’s 

will). Also, regarding the study questionnaire: since the 
individuals’ reasoning differs depending not only on their 
knowledge but also on the context, the emerged categories of 
PSMTs’ probabilistic reasoning might slightly vary because 
of the implemented problems. Accordingly, further research 
on PSMTs’ probabilistic reasoning and related conceptions is 
demanded (different groups, different contexts, different 
questions) so that the study results can be verified.

Acknowledgements
I confirm that this work is original and not is currently under 
consideration for publication elsewhere. However, since 
this  manuscript is a part of a PhD research, if it has been 
accepted for publication, I may contact you to get permission 
to release it (as included in the dissertation) in the Hiroshima 
University Institutional Repository. 

Competing interests
The author has declared that no competing interest exist.

Author’s contributions
I declare that I am the sole author of this research article.

Ethical considerations
This article followed all ethical standards for a research 
without direct contact with human or animal subjects.

Funding information
This research received no specific grant from any funding 
agency in the public, commercial, or not-for-profit sectors.

Data availability
As written in the acknowledgement section, the data 
provided in this research will be released in the Hiroshima 
University Institutional Repository.

Disclaimer
The views and opinions expressed in this article are those of 
the authors and do not necessarily reflect the official policy or 
position of any affiliated agency of the authors.

References
Ainley, J., & Monteiro, C. (2008). Comparing curricular approaches for statistics in 

primary school in England and Brazil: A focus on graphing. In C. Batanero, G. 
Burrill, C. Reading, & A. Rossman (Eds.), A joint ICMI/IASE study: Teaching statistics 
in school mathematics – Challenges for teaching and teacher education. 
Proceedings of the ICMI Study 18 and 2008 IASE Round Table Conference. 
Monterrey.

Aliaga, M., Cobb, G., Cuff, C., Garfield, J., Gould, R., Lock, R. … Witmer, J. (2005). 
Guidelines for assessment and instruction in statistics education (GAISE) college 
report. Retrieved from http://www.amstat.org/education/gaise/

Amir, G.S., & Williams, J.S. (1999). Cultural influences on children’s probabilistic 
thinking. Journal of Mathematical Behavior, 18(1), 85–107. https://doi.
org/10.1016/S0732-3123(99)00018-8

Elbehary, S.G.A. (2019). The necessity of revising primary school content of probability 
in Egypt to enhance students’ probabilistic reasoning. In: S. Budgett (Ed.), Decision 
making based on data. Proceedings of the Satellite conference of the International 
Association for Statistical Education (IASE), August 2019, Kuala Lumpur.

http://www.pythagoras.org.za�
http://www.amstat.org/education/gaise/
https://doi.org/10.1016/S0732-3123(99)00018-8
https://doi.org/10.1016/S0732-3123(99)00018-8


Page 13 of 15 Original Research

http://www.pythagoras.org.za Open Access

Elbehary, S.G.A. (2020). Teacher education of statistics from theory to practice. 
Journal of Applied Research in Higher Education, 12(5), 857-869.  https://doi.
org/10.1108/JARHE-06-2019-0141

Azcárate, P., Cardeñoso, J.M., & Serradó, S. (2006). Randomness in textbooks: The 
influence of deterministic thinking. In M. Bosch (Eds.), Proceedings of the Fourth 
Congress of European Research in Mathematics Education (pp. 559–568). Sant 
Feliu de Guixols.

Ball, D.L., Lubienski, S.T., & Mewborn, D.S. (2001). Research on teaching mathematics: 
The unsolved problem of teachers’ mathematical knowledge. In V. Richardson 
(Ed.), Handbook of research on teaching (pp. 433–456.). Washington, DC: 
American Educational Research Association.

Batanero, C., Burrill, G., & Reading, C. (2011). Teaching statistics in school mathematics. 
Challenges for teaching and teacher education: A joint ICMI/IASE Study. 
Dordrecht: Springer.

Batanero, C., Chernoff, E., Engel, J., Lee, H., & Sánchez, E. (2016). Research on teaching 
and learning probability. New York, NY: Springer. ICME-13. Topical Survey series.

Batanero, C., Contreras, J.M., Fernandes, J.A., & Ojeda, M.M. (2010). Paradoxical 
games as a didactic tool to train teachers in probability. In C. Reading (Ed.), Data 
and context in statistics education: Towards an evidence-based society. 
Proceedings of the Eighth International Conference on Teaching Statistics 
(ICOTS8). Ljubljana, Voorburg: International Statistical Institute.

Batanero, C., Godino J.D., & Roa, R. (2004). Training teachers to teach probability. 
Journal of Statistics Education, 12(1), 1–15. https://doi.org/10.1080/10691898.20
04.11910715

Batanero, C., Green, D.R., & Serrano, L.R. (1998). Randomness, its meanings and 
educational implications. International Journal of Mathematical Education in 
Science and Technology, 29(1), 113–123. https://doi.org/10.1080/0020739980290111

Batanero, C., & Sanchez, E. (2005). What is the nature of high school students’ 
conceptions and misconceptions about probability? In G. Jones (Ed.), Exploring 
probability in school: Challenges for teaching and learning (pp. 241–266). New 
York, NY: Springer.

Bishop, A.J. (1988). Mathematical enculturation: A cultural perspective on 
mathematics education. Dordrecht: Kluwer.

Borovcnik, M. (2016). Probabilistic thinking and probability literacy in the context of 
risk. Educação Matemática Pesquisa, 18(3), 1491–1516.

Borovcnik, M., & Peard, R. (1996). Probability. In: A.J. Bishop, K. Clements, C. Keitel, J. 
Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education. 
Kluwer international handbooks of education (pp. 239–287). Dordrecht: Springer.

Briand, J. (2005). Une expérience statistique et une première approche des lois du 
hasard au lycée par une confrontation avec une machine simple. Recherches en 
Didactique des sMathématiques, 25(2), 247–281.

Canada, D. (2006). Elementary pre-service teachers’ conceptions of variation in a 
probability context. Statistics Education Research Journal, 5(1), 36–63.

Chassapis, D., & Chatzivasileiou, E. (2008). Socio-cultural influences on children’s 
conceptions of chance and probability. In J.F. Matos, P. Valero, & K. Yasukawa 
(Eds.), Proceedings of the Fifth International Mathematics Education and Society 
Conference (pp. 197–206). Lisbon: Centro de Investigação em Educação, 
Universidade de Lisboa.

Chernoff, E.J. (2008). The state of probability measurement in mathematics education: 
A first approximation. Philosophy of Mathematics Education Journal, 23, 1–23. 
Retrieved from http://socialsciences.exeter.ac.uk/education/research/centres/
stem/publications/pmej/pome23/index.htm

Chernoff, E.J. (2012). Recognizing revisitation of the representativeness heuristic: An 
analysis of answer key attributes. ZDM – The International Journal on Mathematics 
Education, 44(7), 941–952. https://doi.org/10.1007/s11858-012-0435-9

Chernoff, E.J., & Russell, G.L. (2012). The fallacy of composition: Prospective 
mathematics teachers’ use of logical fallacies. Canadian Journal of Science, 
Mathematics and Technology Education, 12(3), 259–271. https://doi.org/10.1080
/14926156.2012.704128

Chernoff, E.J., & Russell, G.L. (2014). Preface to perspective I: Mathematics and 
philosophy. In E.J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting 
plural perspectives (pp. 3–6). Berlin: Springer Science.

Chernoff, E.J., & Sriraman, B. (2014). Introduction to probabilistic thinking: Presenting 
plural perspectives. In E.J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: 
Presenting plural perspectives (pp. xv–xviii). Berlin: Springer Science.

Chernoff, E.J., & Sriraman, B. (2015). The teaching and learning of probabilistic 
thinking: Heuristic, informal and fallacious reasoning. In R. Wegerif, L. Li, & J. 
Kaufman (Eds.), The Routledge International Handbook of Research on Teaching 
Thinking (pp. 369–377). New York, NY: Routledge, Taylor & Francis.

Chiesi, F., & Primi, C. (2009). Assessing statistics attitudes among college students: 
Psychometric properties of the Italian version of the Survey of Attitudes toward 
Statistics (SATS). Learning and Individual Differences, 19(2), 309–313. https://doi.
org/10.1016/j.lindif.2008.10.008

Creswell, J. (2009). Research design: Qualitative, quantitative, and mixed methods 
approaches (3rd ed.). Thousand Oaks, CA: Sage.

Darling-Hammond, L. (2000). Teacher quality and student achievement: A review of 
state policy evidence. Education Policy Analysis Archives, 8(1), 1–44. https://doi.
org/10.14507/epaa.v8n1.2000

Darling-Hammond, L., & Sykes, G. (2003). Wanted: A national teacher supply policy for 
education: The right way to meet the ‘highly qualified teacher’ challenge. 
Educational Policy Analysis Archives, 11(33), 1–55. https://doi.org/10.14507/
epaa.v11n33.2003

Dessart, D.J. (1995). Randomness: A connection to reality. In P.A. House & A.F. Coxford 
(Eds.), Connecting mathematics across the curriculum (pp. 177–181). Reston, VA: 
National Council of Teachers of Mathematics, 1995 Yearbook.

Díaz, C., Batanero, C., & Contreras, J.M. (2010). Teaching independence and 
conditional probability. Boletín de Estadística e Investigación Operativa, 26(2), 
149–162.

Dollard, C. (2011). Preservice elementary teachers and the fundamentals of 
probability. Statistics Education Research Journal, 10(2), 27–47.

Elo, S., Kääriäinen, M., Kanste, O., Pölkki, T., Utriainen, K., & Kyngäs, H. (2014). 
Qualitative content analysis: A focus on trustworthiness. SAGE Open, 4(1), 1–10. 
https://doi.org/10.1177/2158244014522633

Estrella, S., & Olfos, R. (2010). Changing the understanding of probability in talented 
children. In C. Reading (Ed.), Data and context in statistics education: Towards an 
evidence-based society. Proceedings of the Eighth International Conference on 
Teaching Statistics (ICOTS 8), Ljubljana. Voorburg: International Statistical 
Institute.

Falk, R. (1986). Conditional probabilities: Insights and difficulties. In R. Davidson & 
J.  Swift (Eds.), Proceedings of the Second International Conference on Teaching 
Statistics (pp. 292–297). Victoria: International Statistical Institute.

Falk, R., & Konold, C. (1992). The psychology of learning probability. In F.S. Gordon & 
S.P. Gordon (Eds.), Statistics for the twenty-first century (pp. 151–164). 
Washington, DC: Mathematical Association of America.

Fennema, E., & Franke, M. (1992). Teachers’ knowledge and its impact. In D.A. Grouws 
(Ed.), Handbook of research on mathematics teaching and learning (pp. 147–164). 
New York, NY: Macmillan.

Fischbein, E. (1975). The intuitive source of probability thinking in children. Dordrecht: 
Reidel.

Fischbein, E. (1987). Intuition in science and mathematics: An educational approach. 
Dordrecht: Reidel Pub.

Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic: 
Intuitively based misconceptions. Journal of Research in Mathematics Education, 
28(1), 95–106. https://doi.org/10.2307/749665

Franklin, C., & Mewborn, D. (2006). The statistical education of PreK-12 teachers: A 
shared responsibility. In G. Burrill (Ed.), NCTM 2006 yearbook: Thinking and 
reasoning with data and chance (pp. 335–344). Reston, VA: National Council of 
Teachers of Mathematics.

Garfield, J.B., & Ben-Zvi, D. (2005). A framework for teaching and assessing reasoning 
about variability. Statistics Education Research Journal, 4(1), 92–99.

Gillard, E., Van Dooren, W., Schaeken, W., & Verschaffel, L. (2009). Dual processes in 
the psychology of mathematics education and cognitive psychology. Human 
Development, 52(2), 95–108. https://doi.org/10.1159/000202728

Giordan, A. (1998). Apprendre! Paris: Belin.

Giordan, A., & Pellaud, F. (2004). La place des conceptions dans la médiation de la 
chimie. L’actualité Chimique, 280(281), 49–52.

Gras, R., & Totohasina, A. (1995). Chronologie et causalité, conceptions sources 
d’obstacles épistémologiques à la notion de probabilité conditionnelle. Recherche 
en Didactique des Mathématiques, 15(1), 49–55.

Green, D. (1993). Randomness – A key concept. International Journal of Mathematical 
Education in Science and Technology, 24(6), 897–905. https://doi.org/10.1080/​
0020739930240615

Hancock, D.R., & Algozzine, B. (2006). Doing case study research: A practical guide for 
beginning research. New York, NY: Teachers College Press.

Heitele, D. (1975). An epistemological view on fundamental stochastic ideas. 
Educational Studies in Mathematics, 6, 187–205. https://doi.org/10.1007/
BF00302543

Ives, S. (2007). The relationship between preservice teachers’ conceptions of 
randomness and their pedagogical content knowledge of probability. In D.K. 
Pugalee, A. Rogerson, & A. Schinck (Eds.), Proceedings of the Ninth International 
Conference of Mathematics into the 21st Century Conference (pp. 318–322). 
Charlotte, NC: University of North Carolina at Charlotte.

Jones, G., Langrall, C., & Mooney, E. (2007). Research in probability: Responding to 
classroom realities. In F. Lester (Ed.), Second handbook of research on mathematics 
teaching and learning (pp. 909–955). Greenwich, CT: Information Age Publishing 
and NCTM.

Kapadia, R., & Borovcnik, M. (2010). Reviewing and promoting research in probability 
education electronically. In C. Reading (Ed.), Data and context in statistics 
education: Towards an evidence-based society. Proceedings of the Eighth 
International Conference on Teaching Statistics (ICOTS8), Ljubljana. Voorburg: 
International Statistical Institute.

Kazak, S., & Pratt, D. (2017). Pre-service mathematics teachers’ use of probability 
models in making informal inferences about a chance game. Statistics Education 
Research Journal, 16(2), 287–304. https://doi.org/10.52041/serj.v16i2.193

Kissane, B., & Kemp, M. (2010, December 17–21). Teaching and learning probability in 
the age of technology. Paper presented at the Fifteen Asian technology conference 
on mathematics, Kuala Lumpur.

Konold, C. (1989). Informal conceptions of probability. Cognition and Instruction, 6(1), 
59–98. https://doi.org/10.1207/s1532690xci0601_3

Konold, C. (1991). Understanding student’s beliefs about probability. In E.V. Glasersfeld 
(Ed.), Radical constructivism in mathematics education (pp. 139–156). Dordrecht: 
Kluwer Academic Publishers.

Konold, C., Pollatsek, A., Well, A., Lohmeier, J., & Lipson, A. (1993). Inconsistencies in 
students’ reasoning about probability. Journal for Research in Mathematics 
Education, 24(5), 392–414. https://doi.org/10.2307/749150

Kustos, P., & Zelkowski, J. (2013). Grade-continuum trajectories of four known 
probabilistic misconceptions: What are students’ perceptions of self-efficacy 
in  completing probability tasks? The Journal of Mathematical Behavior, 32(3), 
508–526. https://doi.org/10.1016/j.jmathb.2013.06.003

http://www.pythagoras.org.za�
https://doi.org/10.1108/JARHE-06-2019-0141
https://doi.org/10.1108/JARHE-06-2019-0141
https://doi.org/10.1080/10691898.2004.11910715
https://doi.org/10.1080/10691898.2004.11910715
https://doi.org/10.1080/0020739980290111
http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome23/index.htm
http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome23/index.htm
https://doi.org/10.1007/s11858-012-0435-9
https://doi.org/10.1080/14926156.2012.704128
https://doi.org/10.1080/14926156.2012.704128
https://doi.org/10.1016/j.lindif.2008.10.008
https://doi.org/10.1016/j.lindif.2008.10.008
https://doi.org/10.14507/epaa.v8n1.2000
https://doi.org/10.14507/epaa.v8n1.2000
https://doi.org/10.14507/epaa.v11n33.2003
https://doi.org/10.14507/epaa.v11n33.2003
https://doi.org/10.1177/2158244014522633
https://doi.org/10.2307/749665
https://doi.org/10.1159/000202728
https://doi.org/10.1080/0020739930240615
https://doi.org/10.1080/0020739930240615
https://doi.org/10.1007/BF00302543
https://doi.org/10.1007/BF00302543
https://doi.org/10.52041/serj.v16i2.193
https://doi.org/10.1207/s1532690xci0601_3
https://doi.org/10.2307/749150
https://doi.org/10.1016/j.jmathb.2013.06.003


Page 14 of 15 Original Research

http://www.pythagoras.org.za Open Access

Kvatinsky, T., & Even, R. (2002). Framework for teacher knowledge and understanding 
of probability. In B. Phillips (Ed.), Proceedings of the Sixth International Conference 
on the Teaching of Statistics (ICOTS6). Hawthorn: International Statistical Institute.

Larose, F., Bourque, J., & Freiman, V. (2010). The effect of contextualising probability 
education on differentiating the concepts of luck, chance, and probabilities 
among middle and high school pupils in Quebec. In C. Reading (Ed.), Data and 
context in statistics education: Towards an evidence based society. Proceedings of 
the Eighth International Conference on Teaching Statistics (ICOTS8). International 
Statistics Institute.

Lecoutre, M. (1992). Cognitive models and problem spaces in purely random 
situations. Educational Studies in Mathematics, 23, 557–568. https://doi.
org/10.1007/BF00540060

Lecoutre M.P., & Fischbein E. (1998). Evolution avec l’âge de ‘misconceptions’ dans les 
intuitions probabilistes en France et en Israël [Evolution with age of probabilistic 
intuitions in France and Israel]. Recherches en Didactique des Mathématiques, 
18(3), 311–332.

Linneberg, M.S., & Korsgaard, S. (2019). Coding qualitative data: A synthesis guiding 
the novice. Qualitative Research Journal, 19(3), 259–270. https://doi.org/10.1108/
QRJ-12-2018-0012

Lopez, V., & Whitehead, D. (2013). Sampling data and data collection in qualitative 
research. In Z. Schneider, D. Whitehead, G. LoBiondo-Wood, & J. Habe (Eds.), 
Nursing and midwifery research: Methods and critical appraisal for evidence-
based practice (pp. 124–140). Sydney: Mosby Elsevier.

Martignon, L. (2014). Fostering children’s probabilistic reasoning and first elements of 
risk evaluation. In E.J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: 
Presenting plural perspectives (pp. 149–160). Dordrecht: Springer.

Miles, M.B., Huberman A.M., & Saldana, J. (2013). Qualitative data analysis: A 
methods sourcebook (4th ed.). Thousand Oaks, CA: Sage.

Moreno, A., & Cardeñoso, J.M. (2014). Overview of prospective mathematics 
teachers’ probabilistic thinking, In K. Makar, B. De Sousa, & R. Gould (Eds.), 
Sustainability in statistics education. Proceedings of the Ninth International 
Conference on Teaching Statistics (ICOTS9), Flagstaff, AZ. Voorburg: International 
Statistical Institute.

Morris, A.K., Hiebert, J., & Spitzer, S.M. (2009). Mathematical knowledge for teaching 
in planning and evaluating instruction: What can preservice teachers learn? 
Journal for Research in Mathematics Education, 5(40), 491–529. https://doi.
org/10.5951/jresematheduc.40.5.0491

Mosvold, R., & Fauskanger, J. (2014). Teachers’ beliefs about mathematical horizon 
content knowledge. International Journal for Mathematics Teaching and Learning, 
9(3), 311–327.

Musch, J., & Ehrenberg, K. (2002). Probability misjudgement, cognitive ability, and 
belief in the paranormal. British Journal of Psychology, 93(2), 169–177. https://
doi.org/10.1348/000712602162517

National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and 
evaluation standards for school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards 
for school mathematics. Reston, VA: Author.

NationMaster. (2021). Egypt demographics profile. Retrieved from https://www.
indexmundi.com/egypt/demographics_profile.html

Nisbett, R.E., Krantz, D.H., Jepson, C., & Kunda, Z. (1983). The use of statistical 
heuristics in everyday inductive reasoning. Psychological Review, 90(4), 339–363. 
https://doi.org/10.1037/0033-295X.90.4.339

Pange, J., & Talbot, M. (2003). Literature survey and children’s perception on risk. ZDM 
– The International Journal on Mathematics Education, 35(4), 182–186. https://
doi.org/10.1007/BF02655740

Papaieronymou, I. (2010). Recommended knowledge of probability for secondary 
mathematics teachers. In V.D. Guerrier, S.S. Lavergne, & F. Arzarello (Eds.), 
Proceedings at the 6th Congress of the European Society for Research in 
Mathematics Education (CERME6). Retrieved from http://ife.ens-lyon.fr/editions/
editions-electroniques/cerme6/

Pecky, R., & Gould, R. (2005). Preparing secondary teachers to teach statistics: A 
distance education model. Invited paper at the International Statistical Institute 
55th Session, Sydney.

Piaget, J. (1975). L’équilibration des structures cognitives. Paris: Presses Universitaires 
de France.

Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children. New York, 
NY: Norton.

Pratt, D., & Kazak, S. (2018). Research on uncertainty. In D. Ben-Zvi, K. Makar, & J. 
Garfield (Eds.), International handbook of research in statistics education (pp. 
193–227). Cham: Springer International Handbooks of Education.

Primi, C., Morsanyi, K., & Chiesi, F. (2014). Measuring the basics of probabilistic 
reasoning: The IRT-based construction of the probabilistic reasoning 
questionnaire. In K. Makar, B. De Sousa, & R. Gould (Eds.), Sustainability in 
statistics education. Proceedings of the Ninth International Conference on 
Teaching Statistics (ICOTS9), Flagstaff, AZ. Voorburg: International Statistical 
Institute.

Rivkin, S.G., Hanushek, E.A., & Kain, J.F. (2005). Teachers, schools, and academic 
achievement. Econometrica, 73(2), 417–458. https://doi.org/10.1111/j.1468-0262.​
2005.00584.x

Savard, A. (2008). From ‘real life’ to mathematics: A way for improving mathematical 
learning. Paper presented at the International Congress on Mathematical 
Education (ICME 11), Monterrey.

Savard, A. (2010). Simulating the risk without gambling: can student conceptions 
generate critical thinking about probability? In C. Reading (Ed.), Data and context 
in statistics education: Towards an evidence-based society. Proceedings of the 
Eighth International Conference on Teaching Statistics (ICOTS8), Ljubljana. 
Voorburg: International Statistical Institute.

Savard, A. (2014). Developing probabilistic thinking: What about people’s conceptions? 
In E.J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural 
perspectives (pp. 283–298). Berlin: Springer.

Schacter, J., & Thum, Y.M. (2004). Paying for high- and low-quality teaching. Economics 
of Education Review, 23(4), 411–430. https://doi.org/10.1016/j.econedurev.2003.​
08.002

Sharma, S. (2016). Probability from a socio-cultural perspective. Statistics Education 
Research Journal, 15(2), 126–144. https://doi.org/10.52041/serj.v15i2.244

Shaughnessy, J.M. (1992). Research in probability and statistics: Reflections and 
directions. In D.A. Grouws (Ed.), Handbook of research on mathematics teaching 
and learning (pp. 465–494). New York, NY: Macmillan.

Stohl, H. (2005). Probability in teacher education and development. In G. Jones (Ed.), 
Exploring probability in school: Challenges for teaching and learning (pp. 345–
366). New York, NY: Springer.

Thomas, D. (2006). A general inductive approach for analysing qualitative evaluation 
data. American Journal of Evaluation, 27(2), 237–246. https://doi.org/10.1177/​
1098214005283748

Ticehurst, G.W., & Veal, A.J. (2000). Business research methods: A managerial 
approach. Longman: Pearson Education Pty Limited.

Torres, G.E. (2014). Training prospective teachers for teaching probability at secondary 
school in Colombia. In K. Makar, B. De Sousa, & R. Gould (Eds.), Sustainability in 
statistics education. Proceedings of the Ninth International Conference on 
Teaching Statistics (ICOTS 9), Flagstaff, AZ. Voorburg: International Statistical 
Institute.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. 
Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124

Watson, J., & Moritz, J. (2003). Fairness of dice: A longitudinal study of students’ 
beliefs and strategies for making judgments. Journal for Research in Mathematics 
Education, 34(4), 270–304. https://doi.org/10.2307/30034785

Watson, J.M., & Kelly, B.A. (2004). Expectation versus variation: Students’ decision 
making in a chance environment. Canadian Journal of Science, Mathematics 
and Technology Education, 4(3), 371–396. https://doi.org/10.1080/1492615040​
9556620

Weyers, M.L., Strydom, H., & Huisamen, A. (2008). Triangulation in social work 
research: The theory and examples of its practical application. Social Work/
Maatskaplike Werk, 44(2), 207–222. https://doi.org/10.15270/44-2-251

Yin, R.K. (2003). Case study research: Design and methods (2nd ed.). Thousand Oaks, 
CA: Sage.

Appendix starts on the next page → 

http://www.pythagoras.org.za�
https://doi.org/10.1007/BF00540060
https://doi.org/10.1007/BF00540060
https://doi.org/10.1108/QRJ-12-2018-0012
https://doi.org/10.1108/QRJ-12-2018-0012
https://doi.org/10.5951/jresematheduc.40.5.0491
https://doi.org/10.5951/jresematheduc.40.5.0491
https://doi.org/10.1348/000712602162517
https://doi.org/10.1348/000712602162517
https://www.indexmundi.com/egypt/demographics_profile.html
https://www.indexmundi.com/egypt/demographics_profile.html
https://doi.org/10.1037/0033-295X.90.4.339
https://doi.org/10.1007/BF02655740
https://doi.org/10.1007/BF02655740
http://ife.ens-lyon.fr/editions/editions-electroniques/cerme6/
http://ife.ens-lyon.fr/editions/editions-electroniques/cerme6/
https://doi.org/10.1111/j.1468-0262.​2005.00584.x
https://doi.org/10.1111/j.1468-0262.​2005.00584.x
https://doi.org/10.1016/j.econedurev.2003.08.002
https://doi.org/10.1016/j.econedurev.2003.08.002
https://doi.org/10.52041/serj.v15i2.244
https://doi.org/10.1177/1098214005283748
https://doi.org/10.1177/1098214005283748
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.2307/30034785
https://doi.org/10.1080/14926150409556620
https://doi.org/10.1080/14926150409556620
https://doi.org/10.15270/44-2-251


Page 15 of 15 Original Research

http://www.pythagoras.org.za Open Access

Appendix 1
The probability contexts survey
The following table summarizes seven various contexts at which the probability can be operated. Based on your understanding of theoretical, 
experimental, and conditional probability, could you determine the appropriateness of each situation to approach each probability 
interpretation? Please note that some contexts can be adapted to approach more than one concept (i.e., you may select multiple interpretations 
for each setting).

The situation An example The probability interpretation

Theoretical Experimental Conditional 

To predict the weather circumstances It is probable to rain tomorrow

To predict the result of a handball match 
for your school team

it is a weak possibility to win the handball competition

To predict the gender of a newborn baby The probability of giving birth to a girl equals 50%

To express the status of a patient The probability of living to 90 equals 40%

To express what we prefer Your friend probably prefers science to mathematics

To predict the quality of some products The probability that the lamp produced by a factory is defective equals 3%.

To predict the winner for some chance 
games

The probability of getting number 4 when throwing a die equals 3%.

FIGURE 1-A1: The probability contexts survey.
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