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This paper argues that mathematics should be a human activity in which the process of guided invention 
takes the learner through the various stages and steps of the discovery of mathematical ideas and 
concepts. The central premise is that proof functions as an explanation, where experimental mathematics 
is used to empirically convince the learner that the conjecture holds true. Inductive reasoning used while 
working with the computer software Sketchpad assists learners in arriving at and testing their 
conjectures. 
 
 
Introduction 
There are various definitions and conceptions of 
the word ‘proof’. To most mathematicians, proof 
plays the role of verification. But does this 
conception of proof satisfy a similar need for the 
masses of people not inclined to become 
mathematicians? In his book, I Believe, Rampa 
(1977) makes the following comment:  

Oh humans always want proof of 
everything, they even want proof that 
they are humans, but how can you prove 
a thing…If a thing is true it needs no 
proof because it is self evident that the 
thing is there, but if a thing is not true 
and if it is not there then no amount of 
'proof' will prove that it is there so there 
is no point in trying to prove anything. 
(1977: 01) 
Is this a reflection of the way proof is viewed 

by most people? This paper argues otherwise. 
Proof-making in geometry is a difficult task in 

mathematics classrooms, and this surely must have 
contributed to the ‘math-o-phobia’ that has plagued 
schools. The evidence available shows that proving 
in mathematics should be left only to 
mathematicians. A study by Suydam (1985: 483) 
showed that about 50% of learners saw no need to 
prove what they considered obvious. Senk (1985: 
454) found that only 30% of learners attained 70% 
mastery of six geometry problems involving 
proofs. Usiskin (1982) also determined that 
although 50% of secondary school graduates 
completed a year of geometry fewer than 15% 
mastered proof-writing. Bell (1976: 23) carried out 
an investigation of 160 grammar school girls and 
discovered that only 10% of them attained Van 
Hiele stage 3 – the stage at which learners could 
give an acceptably complete, deductive argument 
(proof). Reynolds (in Bell, 1979: 370) studied the 

“proof concepts of grammar school learners” and 
concluded that, in general, formal axiomatic proof 
was not understood even by 17-year old learners 
specialising in mathematical and scientific 
subjects. Williams (Driscoll, 1988: 156) surveyed 
eleventh grade learners and found that fewer than 
30% exhibited any understanding of the meaning 
of proof, and that almost 60% were unwilling to 
argue, for the sake of argument, from any 
hypothesis they considered false. 

These statistics and the experiences of 
mathematics educators in general have created a 
sense of urgency in attempting save proof within 
Euclidean geometry. More importantly, an attempt 
should be made to resurrect the beauty of – and the 
need for – proof in Euclidean geometry. This paper 
does not engage in discussion regarding the need 
for proof, as much has already been written on the 
topic. 

What is it about the way in which Euclidean 
geometry is traditionally taught that creates the 
impression that there is a need for drastic change? 
Many authors have been drawn to this topic and 
the general consensus seems to lie in the way proof 
is taught. Much of our teaching of proof centres on 
a content-driven curriculum. The emphasis is 
placed on the factual aspects of proof and has 
therefore precipitated the belief that learning of 
proof is simply the transmission of knowledge 
from the source (the educator or textbook) to the 
recipient (the learner). The teacher undoubtedly 
becomes the authoritative source of all knowledge, 
along with the textbook. A quick perusal of a few 
mathematics educational journals, will reveal that 
there are many methods of teaching proof which 
deviate from the traditional methods. 

This paper does not intend to imply that the 
statistics listed in the opening paragraph are 
entirely the result of poor traditional teaching. 
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There are many reasons for learners’ poor 
performances in constructing proof in 
examinations and class work:  
• Insufficient emphasis on proof heuristics. 

Teachers prefer the direct teaching method, 
namely, presenting proof directly. 

• Negative attitude as a result of not 
understanding the role/meaning of proof when 
the concept was first introduced to learners. 

• Learners may be working at the incorrect Van 
Hiele level when attempting proof. 

• The negative attitude of learners towards 
mathematics in general. 

• The negative attitude of some teachers towards 
their learners and the subject. 
However, traditional teaching of proof has been 

dominated by an authoritarian method. As Davis 
and Hersh (1983: 282) state: “Then there is a 
desire on the part of some teachers to appear 
brilliant. (What I’m telling you is pretty easy and 
obvious to me, and if you’re not getting it, you 
really must be pretty stupid)”. 

Strangely enough, the view that proof is 
necessary only for verification has been even more 
dominant. The traditional role of proof has been 
seen mainly in terms of verification of the 
correctness of mathematical statements. In other 
words, proof serves the explicit function of 
convincing sceptics about the truth of a statement. 
Coe and Ruthven (1984: 42) summarise this in 
their claim that “the most salient function of proof 
is that it provides grounds for belief”. In fact, a 
survey in 1984 by de Villiers (1990: 18) revealed 
that more than 50% of Higher Education Diploma 
students in mathematics education agreed that the 
only function of proof was that of “making sure”, 
that is, the verification of the truth of the results.  

Despite the dominance of this view, several 
authors have cautioned against stereotyped 
thinking. Bell (1976) states that: 

 conviction is normally reached by quite 
other means than following a logical 
proof; proof is essentially a public 
activity of validation which follows the 
reaching of conviction, though it may be 
conducted internally. (1976: 24) 
Similarly, Hersh (1993: 390) observes that, 

“more than whether a conjecture is correct, 
mathematicians must know why it is correct”.  
Reid (1996: 185) echoes this sentiment: “I would 
like to question the common assumption that the 
role of deductive reasoning or proving in 
mathematics is the verification of conjectures”.  

The view that proof is necessary mainly for 
verification often ignores a simple fact: the learner 

is ultimately responsible for his/her own learning 
and therefore his/her participation is essential. It is 
important to bear in mind that despite the learner’s 
prior knowledge, s/he cannot easily make meaning 
of new concepts. This paper presents an argument 
for proof using reasoning, and make the following 
proposition: If evidence can be presented to a 
learner that would support the knowledge we 
want the learner to learn, in a visually-active way, 
then learning is made easier.  

This hypothesis is based on the adage: ‘I hear 
and I forget, I see and I remember, I do and I 
understand’. The approach is based on real-world 
and problem-centred approaches in mathematics, 
and is underpinned by constructivist theory. It thus 
accepts that “the learners have their own ideas, that 
these persist despite teaching and that they develop 
in a way characteristic of the person and the way 
they experience things, leads inevitably to the idea 
that, in learning, people construct their own 
meaning” (Brookes, 1994: 12).  

Learners can easily determine a correspondence 
between what they know and the new knowledge 
they ‘see’ unfolding as they work through a real-
world exercise. Often there may be a conflict 
between the old knowledge and the new 
knowledge they are discovering. Cognitive re-
structuring of knowledge takes place, where the 
new knowledge is assimilated using existing 
schemas that were already established. This is 
closely linked to the problem-centred learning 
(PCL) approach developed in South Africa in the 
mid 1980’s by researchers at the University of 
Stellenbosch. The PCL approach is based on a 
socio-constructivist theory of the nature of 
knowledge and learning and hinges on the 
following aspects (Olivier, Murray & Human, 
1992): 
• The learner is actively engaged in the process 

of acquiring knowledge. 
• The learner draws on past experiences and 

existing knowledge. 
• Learning is a social process in which new 

knowledge is acquired through interaction with 
other learners and educators. (1992: 33) 
The Hans Freudenthal Institute has, since 1971, 

been developing the theory of Realistic 
Mathematics Education. This is strongly 
influenced by Hans Freudenthal's concept of 
mathematics as a human activity, and takes into 
consideration what mathematics really is, how it 
should be taught and how learners should actually 
learn. Selden and Selden (1999) state that: 

from the perspective of Realistic 
Mathematics Education, students learn 
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mathematics by mathematising the 
subject matter through examining 
'realistic' situations, i.e., experientially 
real contexts for students that draw on 
their current mathematical under-
standings. (1999:  9) 
This paper draws attention to an important 

consideration, that mathematics must be a human 
activity, which is presented in a way that resembles 
the manner in which it was discovered. In other 
words, mathematics teaching must be organised in 
such a way that the process of guided invention 
takes the learner through the various stages and 
steps of the discovery of mathematical ideas and 
concepts.  
 
Proof as a means of explanation 
The paper argues that proof serves as a means of 
explanation. Tiles (1991) provides a definition that 
encapsulates the function of proof:  

By proof is meant a deductively valid, 
rationally compelling argument which 
shows why this must be so... (1991: 7) 
This function of proof helps the individual 

make sense of a mathematical result and satisfies 
the individual’s curiosity as to why it may be true. 
This aspect has been neglected because proof has 
been seen as performing only the function of 
verification. Coe and Ruthven (1984: 42) claim 
that less emphasis has been placed on explanation 
because much writing about proof  “has been from 
a philosophical rather than a pedagogical  
perspective”. However, Hanna (1996: 16) states 
that “with today’s stress on ‘meaningful’ 
mathematics, teachers are being encouraged to 
focus on the explanation of mathematical 
concepts”.  Gale (1990) states that “the main goal 
of all science is to first observe and then to explain. 
In mathematics the explanation is the proof” 
[emphasis by author]. Schoenfeld (1985) sums up 
this  important  function of proof succinctly: 

‘Prove it to me’ comes to mean ‘explain 
to me why it is true’, and argumentation 
(proof) becomes a form of explanation, a 
means of conveying understanding. 
(1985: 172) 
Although it is possible to achieve a high level 

of conviction that a conjecture holds true by using 
experimentation, this does not provide a deeper 
understanding as to why the conjecture may be true 
(de Villiers, 1990: 19). Experimentation, especially 
if it is computer-driven, may provide a large 
degree of certainty but it does not necessarily 
provide the insight or understanding of how the 
result may be true as a consequence of other 

already established results. Hersh (1993: 396) 
states that “what proof should do for the student is 
provide insight into why the theorem is true” and 
at the high-school level, “the primary role of proof 
is explanation” (ibid: 398).  

Anderson (1996) provides an appropriate 
summary of the explanatory role of proof in 
establishing a deeper understanding of why certain 
results always hold true:  

Proof should be seen as being about 
explaining, albeit carefully and precisely. 
It is where instrumental understanding 
gives way to relational understanding. It 
should be seen as the essence of 
mathematics and all learners who study 
mathematics should meet it at some time, 
at some level. (1996: 32) 
Slomson (1996: 12) expressed the idea that 

“good proofs not only convince us of the truth of 
mathematical statements, but also helps us to 
understand what is going on”. 

A number of authors emphasise the important 
role of proof as a means of explanation in 
mathematics:  

The mathematician’s reaction shows 
quite clearly that a proof which does 
nothing but prove in the sense of mere 
verification must be unsatisfactory. A 
proof is also expected to generalise, to 
enrich our intuition, to conquer new 
objects, on which our mind may subsist. 
(Otte, 1994: 310) 
The functions of proof are to generate 
knew knowledge and to advance 
mathematical understanding [emphasis 
by author]. (Kitcher, 1984: 189) 
The best proof, even in the eyes of 
practicing mathematicians, is one that not 
only establishes the truth of a theorem 
but also helps understand it. Such a proof 
is also more persuasive and more likely 
to be accepted. (Hanna, 1996: 135)  
This paper thus focuses attention on the role of 

proof as a form of explanation.  
 
Teaching experiments 
This paper reports on two different teaching 
experiments conducted with learners at a 
secondary school. The experiments build on 
research conducted by de Villiers (1990, 1991), in 
the context of dynamic geometry. The purpose of 
the first experiment was to determine whether 
learners have any need for conviction and 
explanation within the context of dynamic 
geometry (Mudaly, 1999). The study also tested 
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curriculum material that was developed as a result 
of previous empirical and theoretical research. The 
material was designed with the aim of helping 
learners discover solutions to problems through a 
process of guided discovery in stages that are easy 
and practical. As the learners progressed through 
the worksheets, they were encouraged to record 
their conclusions and conjectures and so develop 
an explanation (proof). Seventeen learners aged 
about 14 years (Grade 9) were interviewed in 
February 1997. They were selected randomly from 
a group of 153 learners by their Computer Studies 
class teacher, who picked every ninth learner 
appearing in the attendance register. 

The purpose of the second study was to 
determine whether Sketchpad could be useful as a 
mathematical tool when teaching learners to model 
(Mudaly, 2004). Although this study tested 
curriculum material that had already been 
developed (see de Villiers, 1999), it was refined as 
a result of previous empirical and theoretical 
research. Ten learners between the ages of 15 and 
16 years (Grade 10) were interviewed in March 
2000. They were selected randomly from a group 
of 60 learners by their Computer Studies class 
teacher. 
 
Study one 

Research methods 
Learners were given a computer-based task to 
work through, which was based on an equilateral 
triangle. A sketch of the equilateral triangle was 
presented ready-made to the learners, although the 
task of constructing it for themselves might have 
been an interesting one. 
All measurements were 
clearly visible on the 
screen of the computer, 
so that learners could 
easily view any changes 
that might have taken 
place. Furthermore, the 
learner was actively 
involved in finding a 
solution which implied 
that s/he was ultimately 
responsible for his/her 
own learning.  

This method gives 
credence to experiment-
al mathematics, which 
involves a well-planned, 
sequentially structured 
scheme in which the 
learner is guided 

towards “discovering” a solution for him/herself. 
This is in keeping with scientific experiments 
conducted in school laboratories; the experiment is 
generally performed many times, and a conclusion 
can be drawn if the result seems to be the same 
every time. While traditional teaching has been 
teacher-centred, didactic, directive, corrective and 
mostly concerned with the transmission of 
knowledge in well-defined areas, experimental 
teaching in mathematics is grounded in teaching 
skills where the teacher acts as a facilitator. 

The method employed in this study also drew 
on the inquisitive nature – a fundamental 
component – of human beings. Humans have a 
fundamental need to find explanations, and 
children in particular are inclined to ask questions 
such as ‘why’. Most parents have been irked by 
endless questions such as: Why shouldn’t I sit up 
late? Why is the sky so blue? Why must I eat my 
peas? Why is that man so fat? Why do I have to go 
to school? Why do we have to do geometry? Why 
is mathematics so difficult?  

Furthermore, even if a child is inductively 
convinced about the truth of a statement, it does 
not constitute a reasonable proof. In other words, 
the fact that the sun rises every morning does not 
explain why it rises. There is no doubt that even if 
there are thick clouds in the sky we know that the 
sun is there behind the clouds, but it does not 
explain why it rises. Thus, the step that follows 
would require an explanation, albeit a guided one, 
as to why the result is true. It could also be 
interesting to give learners a problem in which the 
result only holds true for certain cases. In the 

 
 Problem 

Conjecture  

Testing 

Establish level of conviction 

use of computer 

use of computer 

use of computer 

unsure 

Guided explanation  
 
Figure 1. Flow diagram illustrating the process of experimental 

mathematics using computer software. 
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process, the learner would undergo an experience 
which is bound to increase learning. A flow 
diagram illustrates the steps involved when using 
computer software in experimental mathematics 
(Figure 1). 

The emphasis on this study is on the level of 
conviction attained by the learner. The experiences 
that are provided are owned by the learner. The 
learning process is thus structured around the way 
in which the learner experiences the problem. 
Critical questions that must be considered are: Can 
a conjecture (intuitive) be drawn? Has the learner 
tested the conjecture sufficiently? Is the learner 
convinced with the result? To what extent is the 
learner convinced? Can the learner explain the 
result? In this experiment, the learners were given 
the following problem to work through: 

Sarah, a shipwrecked survivor, manages 
to swim to a desert island. As it happens, 
the island closely approximates the shape 
of an equilateral triangle. She soon 
discovers that the surfing is outstanding 
on all three of the island's coasts and 
crafts a surfboard from a fallen tree and 
surfs everyday. Where should Sarah 
build her house so that the total sum from 
the house to all three beaches is a 
minimum? (She visits them with equal 
frequency.) 

 
Study one results 

At first, all the learners intuitively guessed that 
Sarah should build her house at the centre. The 
learners were asked why they felt that the house 
should be built at the centre. Kumarasen, for 
example, responded by saying that “… if you build 
anything in the centre then there is always a short 
distance around it”. Kumarasen seemed quite 
convinced of his conjecture and so was Manivasan, 
whose reason was “… because everything will be 
equal”.  Rowan believed that it should be at the 
centre because “it will be close … it will be the 
same distance to all the beaches” and therefore the 
sum will be a minimum. Karishma felt that the sum 
would be a minimum if the point P was at the 
centre because “it will be closer to all three 
beaches”. Ansuya’s reason was similar when she 
said “because it seems the easiest way to get to any 
of the three beaches”.  

An equilateral triangle representing the island 
was then drawn on the computer using the software 
programme, Sketchpad.  Point P was placed within 
the triangle. Perpendicular line segments were 
drawn from P to each side of the triangle. These 
line segments were measured and their sum 

determined. The learner was then allowed to move 
point P around and careful observation was 
encouraged. The learner could see the 
measurements of the perpendicular segments 
change as the point P was moved about. Further, 
they could see that the sum did not change. The 
surprise at discovering this result was clearly 
visible. The following extracts were some of the 
comments made by the learners. 

Kerushnee: (emphatically) Yes, I find the 
result very surprising. 

Ansuya: (confidently) Yes, I thought it 
would change. 

Kumarasen: Yes, because at first you 
think it should be at the centre and the 
sum will be small. But now it can be 
anywhere. 

Floyd: (emphatically) I didn’t expect it. It 
is surprising! 

 
It might be true that this result which the 

learners observed encouraged them to want to 
know why it was the case. The majority of learners 
expressed a desire for an explanation. In fact, 16 of 
the learners (94 percent of the total) said that they 
would want an explanation, and only one learner (6 
percent) cogitated a while before saying that she 
would also like an explanation. The extracts from 
the interviews illustrates this desire that the 
learners had for an explanation. 

Researcher: Do you think then, now that 
you are a 100% convinced, that there 
is a need for an explanation? 

Manivasan: Yes. 
Researcher: Would you want an explan-

ation? 
Manivasan: Yes. 
Researcher: Why? 
Manivasan: So I can understand it 

[learner’s emphasis] 
 
Researcher: Do you think, now that you 

are very convinced … is it necessary 
to know why this is the case? 

Rodney: Yes. 
Researcher: Why do you want an 

explanation for this? 
Rodney: To satisfy my curiosity. 
 
Researcher: Why do you think there is a 

need for an explanation? 
Karishma: Because I’m curious and I’d 

like to know what’s going on.  
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Researcher: Why do you think there is a 
need for an explanation? 

Debashnee: Because I’m a curious 
person and I would like to find a 
solution for things. I would like to do 
the same for this. 

 
Researcher: Do you desire an explanation 

for what is going on? 
Ryham: Yes. 
Researcher: You really would want to 

know why? 
Rhyam: Yes. 
Researcher: Why?  
Rhyam: I like to find out why things are 

taking place. 
 
An interesting part of this experiment focussed 

on whether learners were able to formulate an 
explanation, albeit a guided one, on their own.  

Researcher: Okay, I can see that you 
have done that (referring to the 
writing down of expressions for the 
areas of the three small triangles). 
The next step asks you to add all three 
up. Do you know what to do?       

Nicholas: Yes. 
Researcher: (after a while) You’ve got 

A1, A2 and A3 and you’ve got 
expressions for them. Now add these 
expressions... (after a while) Have 
you done that Nicholas? 

Nicholas: Yes. 
Researcher: Now simplify it... Have you 

done that? 
Nicholas: Yes. 
Researcher: I’ve noticed that you 

removed half ‘a’ as a common factor. 
Nicholas: Yes. 
Researcher: Describe what you have 

done. 
Nicholas: I’ve removed half ‘a’ as a 

common factor and I’ve got half ‘a’ 
into h1 + h2 + h3. 

Researcher: Nicholas can you tell me 
how these three triangles relate to the 
area of the large triangle?  

Nicholas: The area of the three triangles 
when you add it up, will give you the 
area of the big triangle. 

Researcher: If that is the case and we 
found the sum of the areas of the three 
triangles, then what can we conclude? 

Nicholas: (silence) 

Researcher: That the areas of these 
triangles equal the ... ? 

Nicholas: ... area of the big triangle. 
Researcher: Now look at E4. I want you 

to write down this expression. 
Nicholas: (after a while) I noticed that 

the big triangle also had half ‘a’ in it. 
So I cancelled off the half ‘a’ from the 
big triangle and half ‘a’ from the three 
small triangles. 

Researcher: And what have we arrived 
at? 

Nicholas: The height of the three 
triangles… when you add it up it 
gives you the height of the big 
triangle. 

Researcher: What does this mean to you? 
Nicholas: No matter what the heights of 

the three smaller triangles are, it will 
always equal the height of the big 
triangle. 

Researcher: So what does it mean in 
terms of Sarah’s house? 

Nicholas: It means that no matter where 
she puts her house the total distances 
will always be constant. 

 
The ability of the learners to formulate 

conjectures and subject them to critical tests was 
admittedly lacking. However, it is more difficult to 
relate the formal proof, as it is taught in the 
ostensive way, to learners’ past experiences. 
Ultimately, proof is necessary to see why the 
conjecture always holds true, rather than whether 
or not it will hold true. This suggests that proof in 
schools should reflect the idea of an explanation 
instead of the idea of verification. When a teacher 
states directly that a theorem is correct, the learner 
sees no need to verify it. In contrast, where a proof 
is presented as a means of explanation and further 
understanding – as is being advocated by many 
mathematicians and mathematics educators – it 
may be possible to address the current crisis in 
school geometry. 

In the context of this study, it becomes evident 
that learners inherently attempt to find 
explanations, however simplistic they might be. 
Their desire to know why is authentic, and not just 
a hypothetical assumption of some theorist, as was 
demonstrated in this teaching experiment. When 
the learners were asked to attempt an explanation 
they were always willing to try. This may be 
because their level of conviction was always very 
high (the learners, after seeing the results on the 
computer generally indicated that they were 90% 
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to 100% convinced.) Conviction alone is 
insufficient when teaching proof. In this 
experiment the learners were given a worksheet 
that gave appropriate directions for developing an 
explanation. Guided through each step, the learners 
had a good understanding of the explanation. In 
fact, many of them indicated that this was a good 
explanation, which is encouraging considering 
their antipathy towards geometry classes. This 
experiment is still in process, and it should be 
noted that those learners that have gone through 
this process are keen to get back into the computer 
laboratory for further interviews. 
 
Study two 

Research methods 
In the second study, the learners investigated 
perpendicular bisectors of quadrilaterals and 
triangles. The question they were given was: 

In a developing country like South Africa, 
there are many remote villages where 
people do not have access to safe, clean 
water and are dependent on nearby 
streams or rivers for their water supply. 
With the recent outbreak of cholera in 
these areas, untreated water from these 
streams and rivers has become 
dangerous for human consumption. 
Suppose you were asked to determine the 
site for a water reservoir and purification 
plant so that it would be the same 
distance away from four remote villages. 
Where would you recommend the 
building of this plant? 
They were then given a modelling exercise in 

which they were required to work with two 
villages, four villages and then three villages. The 
reason for this particular order is not discussed in 
this paper. 

Study two results 
At first, the learners attempted to solve the 
problem directly, before moving on to the 
modelling exercise. Unlike quadrilaterals, the 
perpendicular bisectors of every triangle they 
constructed, using Sketchpad, showed that the 
perpendicular bisectors were concurrent. This 
raised the curiosity of the learners and I then asked 
them whether they would like to know why the 
perpendicular bisectors of the triangle were always 
concurrent. All learners indicated a desire for an 
explanation, and shared a similar reason: they were 
surprised at what they had experienced.  

Judging by the tone of their voices, it could be 
said that most of them were quite enthusiastic 
about working through an explanation. One learner 

initially seemed uncertain, but eventually admitted 
that he was surprised at the results and would be 
interested to find out why. Several learners felt that 
it would be interesting to know “why the result 
was always true” and that “it would be useful to 
know why the result is true”. Christina’s need for 
an explanation was significant:    

Researcher: Would you want to know 
why this result is always true? 

Christina: Yes…I can see it is true but 
maybe if there is a proof for it I'll 
understand it better. 

 
She showed a very high level of conviction 

when she stated, “I can see it is true” and yet she 
felt that her understanding would be increased if 
she worked through a proof. This indicates that the 
level of conviction obtained from working with 
dynamic geometry software may stimulate further 
curiosity, which can be used as a starting point for 
proof. 

Roxanne also felt that an explanation would 
show her why the result obtained for all triangles 
was different from that obtained for quadrilaterals. 

Researcher: Would you want to know 
why this is always true? 

Roxanne: Yes… maybe it will explain 
why it was different. 

 
The fact that she saw that the results were 

distinctly different for the cases for two and four 
villages kindled in her the desire to want to know 
why this was the case. This also clearly indicates 
that different individuals show different needs 
when working with proof in geometry. Whilst 
some felt that it would be useful just to know why, 
others felt that an explanation will give them 
greater understanding. 

Researcher: Would you like to know why 
the perpendicular bisectors are always 
concurrent? 

Pravanie: I guess that it would be useful 
to know. 

 
Researcher: Would you like to know why 

this is always true? 
Faeeza: It might be interesting to 

know…I can’t believe it (showing 
surprise). 

 
Researcher: Would you like to know why 

this is always true? 
Nigel: Definitely…maybe I could trick 

my friends too. 
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Researcher: Would you like to know why 

this is always the case? 
Schofield: What do you mean sir? 
Researcher: Do you want to know why 

the perpendicular bisectors are always 
concurrent? 

Schofield: I don’t know... mmm... yes, 
maybe it will be interesting. 

Researcher: You think that this would be 
interesting? 

Schofield: Yes…I was surprised at the 
results. 

 
It should perhaps be noted again that Ausubel’s 

learning theory suggests that meaningful learning 
occurs as a result of stimulating the learners’ 
curiosity during a discovery process (Ausubel, 
Novak & Hanesian, 1978). It seems as if the 
difference in their findings for the quadrilateral and 
triangle stimulated their curiosity, and created a 
desire for some form of explanation.  

The explanation for the concurrency of 
perpendicular bisectors of all triangles was based 
on materials developed by de Villiers (1999: 32).  
Below are extracts of interviews with the learners. 

Researcher: Construct the perpendicular 
bisector of any side. 

Desigan: Can I do it for AB? 
Researcher: Yes. (after the construction) 

Desigan, what can you tell me about 
all the points on this perpendicular 
bisector?  

Desigan: It is equidistant from A and B. 
Researcher: What is equidistant? 
Desigan: All the points on this line 

(pointing to the perpendicular 
bisector). 

Researcher: What does that really mean 
to you? 

Desigan: If you measure the distance 
from any point on this line to this A 
and B, the distance will be the same. 

  
In this segment, attempts were being made to 

stimulate the learners to recall the concepts of 
perpendicular bisector and equidistance. In a way, 
it was also a means of determining whether the 
learners actually understood and remembered what 
they had done earlier in the interview. Vischalan 
displayed a similar understanding of the concept of 
equidistance. 

Researcher: Look at this triangle on the 
screen. Construct the perpendicular 

bisector of side AC. (after the 
construction) what can you tell me 
about all the points on this 
perpendicular bisector? 

Vischalan: They are the same distance 
away from A and B. 

Researcher: What is the term used to 
describe same distance away? 

Vischalan: Equidistance. 
Researcher: So what are you saying 

about all points on this line? 
Vischalan: All the points on this line 

(pointing to perpendicular bisector) 
are equidistance from A and C. 

Researcher: Equidistant – not 
equidistance – from A and C. What 
does that really mean to you? 

Vischalan: If you calculate the distance 
from any point to A and then to C the 
distance will be exactly the same. 

 
It was clear that the learners had developed a 

good grasp of this concept (equidistance) and that 
the researcher could therefore continue with the 
rest of the explanation. The next part of the 
explanation was similar in that it required the 
learners to construct another perpendicular bisector 
to relate the point of intersections of the two 
perpendicular bisectors to the three vertices. This 
relationship between the intersection and the three 
vertices did not take long to achieve, although in 
Desigan's case it was obvious that he made a 
mistake at one point in the interview but he did 
correct himself.  

Researcher: Now construct any other 
perpendicular bisector. 

Desigan: (constructing) 
Researcher: What can you tell about the 

points on this line now? 
Desigan: All the points are the same 

distance away from B and C. 
Researcher: Now look at this point of 

intersection. What can you say about 
this point in particular? 

Desigan: Eh … eh… 
Researcher: Think carefully about the 

point. 
Desigan: That point there is the same 

distance away from A and B, and B 
and C. 

Researcher: A and B, and B and C? 
Desigan: Yes, it is the same distance 

away from A, B and C. 
Researcher: Are you sure? 
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Desigan: It lies on this line so it must be 
equidistant from A and B and it lies 
on that line so it must be equidistant 
from A and C. 

Researcher: If it lies on that line would it 
be equidistant from A and C? 

Desigan: No, B and C. 
 

Researcher: Now construct perpendicular 
bisector of AB. 

Vischalan: (constructing) 
Researcher: What can you tell about the 

points on this line now? 
Vischalan: All the points are equidistant 

from B and A. 
Researcher: Now look at this point of 

intersection. What can you say about 
this point in particular? 

Vischalan: That is the point of 
concurrency of these two 
perpendicular bisectors. 

Researcher: Yes, that is true, but think 
carefully about the point. What is 
special about it? 

Vischalan: It is equidistant from A, B and 
C. 

Researcher: Really? Why? 
Vischalan: It is equidistant from A and C, 

and then it is equidistant from A and 
B, then it must be equidistant from A, 
B and C. 

 
It was also quite interesting to note the level of 

reasoning that these learners were able to achieve 
and their ability to employ the basic transitive 
property. For example, if ba ⊗ and cb ⊗ , then 

ca ⊗  (where ⊗  represents a general binary 
relationship). It implies that these learners had 
reached the stage of Van Hiele Level 3 (Usiskin, 
1982). They could see the deductive logic in the 
explanation as they were being guided through it. 
Being able to ascertain that if the point was 
equidistant from A and B and then from B and C, 
therefore the point must be equidistant from A, B 
and C is characteristic of Van Hiele Level 3. 

Furthermore, they seemed convinced that their 
reasoning was correct. The researcher attempted to 
get them to measure the distance just to check, but 
the learners felt that this was not necessary. 

Researcher: So are you sure that this 
point of intersection is the same 
distance away from A, B and C? 

Vischalan: Yes. 

Researcher: Don't you want to measure 
and check? 

Vischalan: No…it's not necessary.  
 
The next aspect was particularly important 

because it would be the real test as to whether the 
learners understood this concept of equidistance.  

Researcher: This you have to think very 
carefully about. What can you say 
about the perpendicular bisector of 
AC? 

Desigan: All the points will be 
equidistant from A and C. 

Researcher: Yes, that is correct. But look 
at the other perpendicular bisectors. 

Desigan: Oh yes, it must pass through the 
point where these two lines meet 
(pointing to the perpendicular 
bisectors). 

 
Researcher: What can you say about the 

perpendicular bisector of BC? 
Vischalan: (silence) 
Researcher: Think about it… What can 

you say about the perpendicular 
bisector of BC? 

Vischalan: I think … it will pass through 
this point of intersection here. 

 
The researcher was aware that the learners may 

have just guessed the response because they 
already knew that the perpendicular bisectors of 
the triangle were concurrent. Therefore the 
response that followed was essential in 
determining whether they were making a response 
with understanding or not. 

Researcher: Really? Do you really think 
so? 

Vischalan: Yes, I’m quite sure.  
Researcher: Why? 
Vischalan; Well if I construct the 

perpendicular bisectors, all the points 
on that line must be equidistant from 
B and C. 

Researcher: Yes, go on. 
Vischalan: What do you mean? 
Researcher: You just said that all the 

points on that line must be equidistant 
from B and C. So what does that 
mean? 

Vischalan: That point of intersection has 
to pass through the point of 
intersection … it has to because that 
point is also equidistant from B and C.  
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Researcher: Really? Why? 
Desigan: Yes, because if all the points on 

this perpendicular bisector of AC are 
the same distances away... then... then 
this point of intersection is also the 
same distance away... then…  

Researcher: Yes? 
Desigan: Then the line must pass through 

the point of intersection. 
 

It was clear that these learners had actually 
grasped the concept of equidistant points. 
Nevertheless, it was not surprising that the learners 
wanted to see whether their conjecture was true. 
This indicated that they where still sceptical. They 
knew that they were correct, but they wanted to see 
it nonetheless. Furthermore, it was interesting to 
note that the learners were actually taking 
ownership of the explanation. 

Researcher: Do you want to see whether 
that is true? 

Desigan: Yes. 
Researcher: Construct the perpendicular 

bisector of AC then. 
Desigan: (after constructing) This is so 

easy. 
Researcher: Was it really that easy? 
Desigan: I didn’t take so long to get it 

right! 
 

Researcher: Do you want to see whether 
that is true? 

Vischalan: Yes. 
Researcher: Construct the perpendicular 

bisector of BC then. 
Vischalan: (after constructing) I was 

right again. 
 

It was encouraging to note that the actual 
explanation became much easier because of the 
way the different problems were modelled. The 
learners made use of their existing knowledge to 
deductively construct an explanation, even though 
they were guided through it. Their high levels of 
understanding (confirmed by the way in which 
they responded) helped them to arrive at an 
explanation with ease.  

It should be noted that this is not the normal 
textbook proof conducted in South African schools 
(which is based on congruency). However, it is a 
valid proof that appears to have increased learners’ 
understanding.  
 

Conclusion 
This research has highlighted some valuable 
insights regarding teaching and learning geometry 
theorems and problems. Given the fundamental 
importance of proof within mathematics as a 
discipline, proof should remain an essential part of 
the secondary school curriculum. Moreover, the 
teaching (and learning) approach used in this 
empirical research seems to have provided learners 
with an improved, and more meaningful, 
understanding of the role of proof. This study has 
focussed mainly on the introduction of proof to 
learners as a means of explanation, rather than as 
verification. 

The research demonstrates how learners have a 
need for an explanation (deeper understanding) 
which is independent of their need for conviction. 
It would appear that the learners exhibited an 
intrinsic desire for an explanation, even though 
they had a high level of conviction with respect to 
their conjecture. Such conviction often reduces a 
problem to the realm of the obvious, in other 
words, ‘I can see that it is true so why do I need an 
explanation for it?’ If the learners were so sure of 
the result then it should have made no difference to 
them whether there was some logical explanation 
for it or not. Yet they expressed a strong desire for 
an explanation. It seemed that they had recognised 
the fact that they had merely observed the result 
through experimentation. The learners were aware 
of the difference that existed between observation, 
through experimentation, and knowing why it was 
really true. They undoubtedly wanted to know why 
the result was true and not whether the result was 
true. From the learners’ responses it seemed that 
the explanation provided insight into the reason 
why it was true.  

More significantly, this research has found that 
with appropriate guidance, learners can construct 
reasonable explanations for their conjectures. The 
learners involved in these teaching interventions, 
showed that, with guidance, they could construct a 
proof. In a sense, the act of moving points on a 
screen and seeing the results displayed on the 
screen is a type of proof in itself. Constructing a 
logical argument thereafter became much easier, 
because seeing the images on the screen allowed 
the learners to see the generalisation in the 
particular diagrams they were constructing.  

Although the two studies worked with very 
small groups of learners, it is possible to 
extrapolate these results to most learners. These 
groups were drawn from ‘below average’ classes, 
which permits a certain level of generalisation in 
the South African context. The fact that the 



Proof and proving in secondary school 
 

 74 

learners in this study were guided through the 
explanation (proof) should not detract from the 
findings, as this approach is in keeping with 
Vygotsky’s Zone of Proximal Development 
(Morris, 2007).  

Although the one-on-one interactions do not 
resemble typical classroom teaching, it is safe to 
hypothesise that even more productive interactions 
would take place in the dynamic classroom 
context. If learners are able to hypothesise and 
attempt explanations individually, then they should 
be able to solve problems even more effectively in 
a collective situation. This would require a 
classroom environment in which interaction with 
peers is encouraged. Investigation of this aspect in 
future research may provide further useful insights.  
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“Even fairly good students, when they have obtained the 
solution of the problem and written down neatly the 
argument, shut their books and look for something else. 
Doing so, they miss an important and instructive phase of 
the work. ... A good teacher should understand and impress 
on his[/her] students the view that no problem whatever is 
completely exhausted. 

One of the first and foremost duties of the teacher is not 
to give his[/her] students the impression that mathematical 
problems have little connection with each other, and no 
connection at all with anything else. We have a natural 
opportunity to investigate the connections of a problem 
when looking back at its solution.” 

George Pólya 


